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CHAPTER I

INTRODUCTION

1.1 DESCRIPTION OF PROBLEM

Digital signal processors (DSP) are being used to perform the moving-
target-indicator (MTI) function in radar systems [1]. There are many ad-
vantages obtained by using the DSP approach, e.g., 1) increased flexibil-
ity in meeting a specific requirement through the use of adaptive and
time-varying system structure, 2) decreased maintenance and fine tuning
requirements of analog systems, etc. However, the finite length of data
words used in a DSP system produce errors that are not present in an infi-
nite precision case. These quantization errors can be categorized as
follows:

1) Analog-to-diital quantization of input signal.
2) Quantization of processor parameters, such as co-

efficient values, due to finite word lengtt (an-
straint.

3) Quantization of arithmetic operations withii the
processor.

It would appear that the output quantlzation error is a monotonically
decreasing function for increasing length of the various finite represen-
tations used in the processor. There are exceptions to this intuitive
rule as shown later in this report. The hardware complexity is an in-
creasing function for increasing word length. The design objective is to
produce a DSP with minimum hardware complexity which will give acceptable
system error performance. It is not necessary to minimize the quantiza-
tion error, but it is desirable to keep this error below the other errors
present in the system. Random noise is inherently associated with the
input signal and this produces a corresponding random error at the DSP
output. The performance of the system is not adversely affected by the
random quantization errors which are less than the errors induced by the
input random noise.

Two methods of implementing the DSP are: 1) performing the arithme-
tic operations with fixed-point numbers and 2) floating-point numbers.
There are various advantages and disadvantages of these two approaches.
It is generally recognized that a floating-point structure gives a larger
dynamic range, but requires more hardware. Detailed analyses of these
methods are presented in this report for a quadrature channel radar sys-
tem. The specific structure of the radar system DSP considered in this
work is different from digital filter systems analyzed in the literature.
This uniqueness has made it extremely difficult to apply the results ob-
tained by other authors and reported in the open literature. However,
these previous efforts have established analytical procedures that are
utilized in this work.
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1.2 PREVIOUS RESULTS

Two categories of previous results are considered. First, statisti-
cal models associated with the error introduced b- roundoff and trunca-
tion of two's complement binary numbers are reviewed. Second , the anal-
yses of quantization errors in digital filters are considered for their
application to the radar DSP.

Gold and Rader [2] have set the example of statistical models to be
used for roundoff, truncation and sign-magnitude truncation. They have
also considered the effects of inexact values of filter parameters, A/D
conversion quantization and product quantization. The main point of
their work is to show that certain recursive digital filter forms are
less sensitive to quantization error than are other forms. The results
obtained are not applicable to the fixed-window nonrecursive digital fil-
ter used in the radar moving-target-indicator.

Oppenheim and Schafer [3] have treated roundoff and truncation for
sign magnitude, two's-complement and one's complement number systems for
both fixed-point and floating-point configurations. They analyze both
infinite impulse response (11R) and finite impulse response filters. The
signal flow graph approach used on pages 439 through 441 is very useful
for the work documented in this report. However, the results do not ap-
ply to a fixed-window MTI.

Chapter 5 of Rabiner and Gold [4] is similar to the Oppenheim and
Schafer presentation but has a slightly different emphasis. This same
comment applies to Oppenheim and Weinstein [5].

The works of Sandberg [6] and Liu and Kaneko [7] are primarily de-
voted to floating-point realizations of recursive filters. The flow
graph presentation has been adapted for use in this report.

All of the above referenced literature share the disadvantage that
they do not directly apply to the fixed-window MTI structure used in the
radar signal processor. Also, the qua.,rature channel structure, which
requires thdt VIF + Qz be determined, has not been included in the results
cited in the literature. The results indirectly apply to digital filters
but not to the entire radar digital signal processor. An analysis of a
fixed-point DSP was made on the LRCP for the U.S. Army in the summer of
1975. The report [8) submitted on this task has outlined the basic ana-
lytical" and simulation procedures that were continued on this grant.

1.3 OUTLINE OF RESEARCH TASKS AND REPORT

This project was organized into three areas, viz., 1) Theoretical
analyses of fixed-point and floating-point DSP, 2) Simulation program de-
velopment and analysis of fixed-point and floating-point DSP and 3)
Floating-point hardware design considerations. Each of these areas was
directed at a quadrature channel radar signal processor with a square-
root-of-the-sum-of-the-squares unit and a post residue integrator. The
exact configuration will be presented later in this report. The areas
were divided into tasks as follows. Moore refined the LRCP analysi [8]
for a fixed-point processor as presented in Chapter 2 while Trivedi
worked with the fixed-point simulation program documented in Chapter 3.
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Holt studied floating-point arithmetic systems and applied these to the
design of a floating-point %P as reported in Chapter 4. Moore followed
Holt's effort with a th- ical analysis of the floating-point DSP in
Chapter 5 while Holt and frivedi developed the floating-point simulation
program of Chapter 6.
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CHAPTER 2

THEORETICAL ANALYSIS OF FIXED-POINT PROCESSOR
by Jerry D. Moore

2.1 DESCRIPTION OF PROCESSOR

There are many configurations that could be used for a digital signal
processor in a radar system. This effort is limited to pulsed doppler
radars that use quadrature channels ir the receiver to extract the moving
target information from the noise and clutter signals. A schematic repre-
sentation of the signal processor is shown in Figure 2.1 and the details of
the digital filter configuration are shown in Figure 2.2. This system is
capable of processing multiple range bins (e.g., 1000) by utilizing one
A/D converter per channel and one digital multiplier per channel. Typical
pulse repetition rates of 5000 pulses/sec requires A/D sample rates of
5 x 106 samples/sec to -.ccomnodate the 1000 range bins. The filter of
Figure 2.2 is a f :'d- ndow configuration, i.e., N samples are used in a
fixed block size tc 1otermine a residue output. While this results in a
signal-to-noise ratio lC.ss as compared to the moving-window approach [9,10]
it does give a much simpler hardware realization.

The residue calculation indicated by Figure 2.1 is ideally given by

Re idue = /I1 + V , (2.1)

where I and Q are the outputs of the two quadrature channels. In practice,
the square root operation is difficult to implement and various approx-
imations are utilized [l], such as

Residue L + 3S/16 0 < S/L < 0.5 (2.2)
3L/4 + lS/16 0.5 < S/L < .0

where L = max{ IIIIQI and S = min { IIIIQ1}. This two-sector approxi-
mation gives a peak error of -2.16%, an RMS error of 12,65%, and an average
error of J.69% when averagea on all phase angles between I and Q. As will
be shown, this approximation is a major contributor to the DSP errors.

The finite word lengths used in the DSP are shown in Figure 2.3 and
sunwrarized in Table 2-1. The nomenclature presented here is used in the
following section to theoretically analyze the fixed-point DSP.

2.2 OUTLINE OF ANALYSIS

The theoretical analysis of the DSP quantization error is presented in
this section. Many symbols, enuations, and boundinq procedures are neces-
sar) and it i< difficult to follow the main development when presented in
its entire detail. Consequently, a summary of the analysis is presented

4
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TABLE 2-1

FIXED-POINT DSP WORD LENGTH

Symbol Description

MX A/D Converter word length. Two's complement form with
1 sign bit and MX - 1 fractional bits.

MC Coefficient word length. Two's complement form with 1
sign bit and MC - 1 fractional bits.

MX + MC - 1 Product word length. Two's complement form with 1 sign
bit and MX + MC - 2 fractional bits.

MT Truncated product word length. Two's complement form
with 1 sign bit and MT - 1 fractional bits.

MF Range bin accumulator word length. Two's complement
form with 1 sign bit, MT - 1 fractional bits and
MF - MT integer bits.

ME Truncated residue, aord length. Magnitude form with
MF - Mi + 1 integer bits and ME - MF + MT - 1
fractional bits. No sign bit is used.

MS Integrator accumulator word length. Magnitude form
with MS - ME + MF - MT + 1 integer bits and
ME - MF + MT- 1 fractional bits. No sign bit is
used.

8



here and detailed derivations, etc., are left to an appendix.
The binary word outputs from the A/D converter are written as the

sum of an errorless term x() and the quantization error e(). The output
of the digital filter w() is used every N samples (where N is the number
of filter coetficients) and written as a sum of an errorless output y() and
the quantization error go, i.e.,

w(mN) = y(mN) + g(mN) (2.3)

where

N-1
y(mN) E h(n)x(mN-n) (2.4)

n=O

and

N-l
g(mN) = x [h(n)e(mN-n) + en(mN-n) ]  (2.5)

n=O + n(Nn) 25

and h(n) represents the filter coefficients. The term en() introduced in
(2.5) is the representation for the truncation of the ntn product used in
forming the mNth filter output. The expressions of (2.3), (2.4) and (2.5)
are valid for either the I or Q channel by adding the appropriate sub-
script.

The output of tzie RMS approximation unit, r() is represented as the
sum of errorless output and an error term erl), i.e.,

r(mN) = /w I(mN) + w(Qi(m + er(mN) . (2.6)

The error term is expressed as a random variable term, Yw() times the
errorless output since the error is a percentage of the perfect value.
Thus

r(mN) = [1 + y w (mN)] iwl(N) WQ(mN) * (2.7)

This approximation to the residue is then truncated prior to the integra-
tor, i.e.,

b(mN) = r(mN) + et(mN) (2.8)

9



where b() is the input to the integrator and et() is the truncation error
associated with the residue.

An expression for the integrator output INT(M) is given by the sum of
M residues. Taking into account the finite arithmetic effects yields

M
INT(M) r z b(mN) . (2.9)

m=l

An infinite precision system would have an integrator output that depends
on the input signal frequency, f, and amplitude, A, and the magnitude of
the transfer function associated with the filter, IH(f)j. A perfect
residue is

u(mN) = u = IH(f)j • A (2.10)

and the errorless integrator output is

INT(M)Ierrorless = M • u . (2.11)

The actual integrator output is expressed as the sum of this errorless
term and the error term INTE(M), viz.,

INT(M) = M . u + INTE(M) . (2.12)

The primary goal of this analysis is to study the error term INTE(M).
This will be accomplished by evaluating the average value and variance of
the integrator error. Using the previous results and assuming statisti-
cal independence of the error contributions (see details in Appendix A)
gives for the average error,

INTE(hY= M[F+et - u], (2.13)

and for the variance

02 =M[G2 + at2 ]aINTE r (2.14)

The mean and variance of the truncation term, i.e., 'et and at2 can be
calculated precisely, but the corresponding parameters for r() are not
easily obtained. It was necessary to use bounding procedures as presented
in Appendix A. A condensed version of the bounding method is obtained by
notinQ r() qiven by (2.7) is orooortional to the vector maqnitude of the
sum of two vectors U and V, where U = (yj, yQ) and V = (gl, gQ). If u

10



and v are the respective magnitudes of these vectors, then it follows that

( + yw) Iu - vj < r < (1 + yw)(u + v) * (2.15)

The mN arguments have been omitted for simplicity,.
The u term can be evaluated as in (2.10) and

v(mN) = Igl(mN) + gQ;(mN) (2.16)

The expected value of r from (2.15) can be expressed with the aid of the
Concave/Convex TIeorem of Appendix A as

(1 + -y) Iu - V1 < (1 + 7w) ju - vj < - < (l + )(u + v) (2.17)

where

< v <Vf -2-- T(2.18)

It follows from (2.13) , (2.17) and (2.18) that

NTE < M[ Ywu+ ( + Y) V2 +t] , (2.19)

and

ThTETT> M 0C + -Y u2 + 2 -* - 2 * *u + ~ ] 2 0

It is possible to start with (2.15) and use (2.17) to evaluate or2,
i.e.,,

r2 = *_ 2 (2.21)
r

After conciderable manipulation the variance term is bounaed as follows,

11



r2<2(l + 2-) 2 + 2u2 + 2 / 2- 7-[yw + 47w + 2J u
rwg9 w w w

+ 2 Y 9 . 2-yw2  2 (2.22)

and

r 2 > (u2 + 2 7g 02 - 2f [7 + 72 + 4 7w + 2J u . (2.23)r -yw ww

It follows from (2.14) , (2.22) and (2.23) that

INTE - M ar max + ot2 (2.24)

and

0INTE -. M ar min + Ot2] (2.25)

The important bounI results of (2.19) , (2.20) (2.24) and (2.25) de-
pend on e-, ot2, ' and gZ. The parameters are evaluated in the following
presentat on. As stated in Table 2-1, the RMS unit output has MT - I
fractional bits and MF - MT + 1 integer bits. When this word is truncated
to ME bits total with ME - MF + MT - 1 fractional bits then the error et
is within the range

- (2 ' ME + MF - MT 4 1 . 2 " MT + 1) < et ! . (2.26)

Assuming a uniform distribution over this range gives

at (2 - ME + MF- MT 2 M) (2.27)

2 2 ZMT ( 2  ME + MF 2

t 3
(2.28)

12



From (2.5) ,t follows ta

N-1
g = Z n) e + 1n (.9
n=o n(.9

but e is equal to zero beca~use of the roundoff procedure used in the A/D
converter and

(2 MT +_ 2 MX MC + 2 < (2.30)

since it is the truncated -oersion of the product. Thus

erg ( MT 2 - MX - MC + 1) (2.31)

and

n 2 (2 MT 2-3 M MC+I)2(2.32)

Using (2.31) in (2.29) yields

S= -N (2 -MT _ 2 - MX - MC + 1) (2.33)

The variance of g is given by

N-1
a92=Na n2 + a e2  Z 2n (.4
g ~~n=0 2 n (.4

where Oe 2 is the variance of the roundoff error e, i.e.,

a 2= 2-2 3MX (2.35)

The mean-squared-value of g is

13



N-i
g g2 + a= i 2 + 2 N-1 n n 2  (2.36)

g nO

This concludes the analysis for the fixed-point processor. The
average error at the integrator output can be upper and lower bounded by
using (2.19), (2.20); thE results below (2.2); (2.27), (2.29) and (2.36).
The integrator output variance can be bounded by using (2.24), (2.25),
(2.22), (2.23); the results below (2.2); (2.34) and (2.36). A computer
program was written to r:alculate the values for specified word lengths,
filter coefficients, etc. Appendix B presents the listing of the program.
An additional feature was included into the program, viz., thz capability
of calculating the minimum and maximum values of the integrator output
error. This program was utilized in obtaining the results presented in
the next section.

2.3 GRAPHICAL PRESENTATIONS OF THEORETICAL RESULTS

The computer program of Appendix B was utilized to obtain specific
values for the integrator output error statistics. The results presented
in this section are for an A/D converter word length of MX = 9 bits, co-
efficient word length MC = 9 [see Ref. 1] and various combinations of
truncated product length MT and pre-integrator word length ME. The input
signal ampl-*+,de was also varied. The range bin accumulator word length
MF was chosen to have the same number of fractional bits as the truncated
product and 3 integer bits to avoid overflow, i.e., MF = MT + 3. In
general the choice is dependent on the number of coefficients being used.

The data presented first are for an input signal amplitude of 0.025
volts with a frequency of 1500 Hz. In Fig. 2.4, the upper bound on the
average output error is plotted as a function of the truncated product
length MT with a family of curves dependent of the truncated residue word
length ME. There are several important observations that can be made
from Fig. 2.4, and from the expanded plot of Fig. 2.5.

1) For a specified member of the family of curves, i.e., given
ME, then the upper bound on the error goes from a positive
value to a negative value as MT is increased.

2) For a given value of ME, the error curve doesn't change
very much when MT increases beyond some threshold value,
(: 11 or 12).

3) For a given vai..e of ME, then in general the minimum
magnitude of the error is not obtained by the maximum
value of MT. For example, when ME = 10 the smallest
magnitude error is -3.35 x lO"3 and occurs when MT = 11.

4) For a given value of MT, then the minimum magnitude of the
error is not obtained by the maximum value of ME. For
example, when MT = 12 the ;mallest magnitude error is

14
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-l x 10- 4 and occurs when ME = 11. If ME is decreased then
a larger magnitude negative error is obtained. If ME is
increased then a larger magnitude positive error is obtained.

5) For decreasing values of MT, then the family of curves tend
to converge.

These observations are supported by the intuitive reasoning that the
RMS unit converts the negative error caused by the product truncation in-
to a positive error. The truncation of the residue will cause a negative
error that will make the output error more negative. The relative con-
tributions of these terms will determine the sign of the resultant error.

Lower bound results for 0.025 volts signal amplitude and 1500 Hz
frequency are presented in Fig. 2.6 and 2.7. The same observations are
noted as above, but the curves have been shifted in a negative direction.

A comparison of the upper and lower bounds reveals two observations.
First, when ME is small, e.g., ME = 6, then there is strong convergence.
Second,for larger ME valuese.g., ME > 10, the bounds are not tight. A
typical comparison is shown in Fig. 2.8 for maximum length of ME = MT + 3.
The maximum and minimum error limits are also included for comparison.
Note that the middle point of the extremes is in close agreement to the
middle point of the bounds,

An alternative method for analyzing the data is to present the
average error bounds as a function of ME with MT being fixed. The same
amplitude and frequency signal was used to obtain the results of Fig. 2.9.
A value of MT = 13 was chosen as a typical vaije. Note the convergence
of the bound curves as ME decreases. The best choice for ME depends on
which bound is being considered, i.e., for the upper bound ME = 11 or 12
would be chosen while for the lower bound any ME > 12 would be acceptable.

Figures 2.4 through 2.9 have been concerned with the average error
bounds. The integrator ouLput error variance bounds are presented in
Fig. 2.10 as a function of MT with ME as a family of curves. The lower
bound is zero for values of ME and MT not plotted. The following obser-
vations are made:

1) The upper bound curves converge for decreasing values
of MT.

2) The bound curves level off for increasing values of
MT.

3) The upper and lower bound curves converge for ME = 6
or 7 as MT increases.

4) The variance decreases monotonically as ME increases,
but the decrease is small for ME - 10.

The curves of Fig. 2.11A and B Dresent the variance bounds as a function
of ME with MT as the family parameter. Similar conclusions are drawn.

The second set of data presented are for a signal amplitude of 0.413
volts and bOO Hz. The average error upper bounds are presented in
Fig. 2.12 through Fig. 2.15 while the variance is presented in Fig. 2.16
through Fig. 2.18. Comparing Fig. 2.12 to Fig. 2 4 reveals a strong
similarity for low values of ME. It is difficult to compare the results
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for larger values o, 1E by using these curves. However, a comparison of
Fig. 2.13 to Fig. 2.5 reveals that when the truncation error introduced
by ME becomes small, then the error caused by other sources tends to
dominate. The larger signal amplitude used in Fig. 2.13 will have a larger
error contribution due to the 0.69% error of the RMS unit.

A comparison of the upper and lower bounds on the average error is
presented in Figures 2.14 and 2.15. As noted previously for the lower
amplitude case, there is not an advantage gained by increasing ME > 10 or
11. The middle values of the extreme values in Fig. 2.14 do not fall as
closely to the middle of the bound values as they did in Fig. 2.8. This
is attributed to the asymmetrical error properties of the RMS unit that
become predominant for larger signal amplitudes.

The integrator output error variance bounds are presented in Fig. 2.16
as a function of MT with ME as a parameter family. The lower bound is
zero for ME > 8. Similar observations as made for Fig. 2.10 are possible
for this case. However, note that the bound curves are not as tight due
to the large signal amplitude and the corresponding larger error intro-
duced by the RMS unit. It appears that the upper bound curves have
leveled off for MT , 12 or 13.

The variance bounds are presented in Figures 2.17 and 2.18 as a
function of ME with MT as a parameter family. Note that the upper bound
variance does not decrease appreciably for ME > 7 or 8.

A third technique for analyzing the data is to fix the MT parameter
at a value greater than the critical threshold and present the error
statistics as a function of signal amplitude. The average error upper
and lower bounds -re presented in Figures 2.19 and 2.20 with MT = 13.
There is close agreement between the bounds for ME < 9. The bounds are
not strongly dependent on the signal amplitude except for certain isolated
values of ME, e.g., the upper bound curves for ME = 11. The variance
bounds are presented in Fig. 2.21. Note the convergence of the upper
buund curves as the signal amplitude increases. This is a result of the
RMS unit induced error becoming predominant. The bounds are not tight and
appear to diverge for increasing signal amplitude. The variance upper
bound doesn't change much for ME > 9.

The results presented in this section are compared to the simulation
results in Chapter 3.

A follow-on study was attempted after the results presented in
Figures 2.4 through 2.21 were obtained. It was determined that the error
statistics reported in Reference 8 and used in this analysis were not
descriptive of the two sector approximation of (2.2). The root-mean-
square error should be 0.126E% instead of 12.65%. This new information
was incorporated into the computer program and runs made to determine the
affect on the error statistics. The average error was unchanged, but the
error variance did reflect this parameter change. The change was most
pronounced at larger signal amplitudes, e.g., a maximum decrease by a
factor of 2 resulted at 0.317 volts amplitude in Fig 2.1 whereas a
regligible decrease was noted for amplitudes less thdn 0.1 volts.
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CHAPTER 3

SIMULATION ANALYSIS OF FIXED POINT-PROCESSOR
by Bhadrayu J. Trivedi

The simulation study of the fixed-point MTI processor was performed
with the aid of a Fortran simulation program developed at The University
of Alabama, Huntsville [14]. A description of the simulation program
and the modifications made to obtain statistical information and a dis-
cussion of the simulation rsults are presented in this chapter. Section
3.1 deals with the description of the program and Section 3.2 with the
discussion of simulation results.

3.1 DESCRIPTION OF SIMULATION PROGRAM

The simulation program uses an integer programming technique which
represents all the fixed-point binary numbers in the processor as deci-
mal integer numbers. This technique is described in detail in Section
3.1.1. The routines for simulating basic operations such as addition,
multiplication, truncation and/or expansion, finding magnitude, etc., of
binary numbers; are based on this technique. The routines which simulate
the system blocks such as the coefficient quantizer, input A/D converter,
the digital filter, the RMS unit and the integrator also use the same
technique as well as the routines which simulate the basic binary arith-
metic operations. These routines and the overall program are desc-ibed
in Section 3.1.2 with the help of detailed flow charts. The simulation
program as it was used for this project is listed in Appendix E along
with a discussion of data card-formats. Section 3.1.3 suggests improve-
ments in the simulation program that could be implemented to achieve
higher speed and increased efficiency for a typical program run.

3.1.1 Detailed Integer Programming Technique

Throughout the fixed-point processor the arithmetic operations are
performed in a two's complement fixed-point binary scheme. For the pur-
pose of Fortran simulatiin they are represented as positive decimal inte-
gers. For example, suppose that at a particular point in the processor a
number is represented with N binary digits including the sign. Its level
is defined as

LEVEL = 2N (3.1)

If the number has no sign bit, a fictitious sign bit should be added to
compute the level. Let there be L binary digits for the fraciional part
of the number without sign, then the quantization interval is defined as

QI = 2-L (3.2)

Therefore,

LEVEL/2 = 2 N-l (3.3)
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represents the sign bit in this two's complement integer notation. Table
3-1 illustrates conversion from a real two's complement notation to a
"integer decimal notation." The real two's complement binary number is
integerized by shifting the radix point to the right-most position. This
binary number then is expressed as an integer decimal number. Note that
in this form the number is always expressed as a positive number. If the
number is smaller than (LEVEL/2) it is a positive number and otherwise
negative. To obtain its real decimal value,LEVEL has to be subtracted
from the negative number; the positive number is not altered. The number
then has to be multiplied by its quantization interval as defined in
Equation (3.2).

The following example illustrates an application of the technique.
Example: Suppose the number (-0.25)0 is to be added to itself six
times to obtain the answer (-l.5)io. IF (-0.25)1o is represented with
N=3 bits its representation in integer decimal notation is 71o (i.e.,
1.112). To avoid an overflow it is necessary to expand the bit-length to
N=4 thereby adding an extra integer bit. Now the number is represented
as 1510 (i.e., 11.112). Now if the iumber is added to itself six times,
each time ignoring the carry, then the result is 101o (i.e., 10.102). Now
the result can be truncated down to a bit-length N=3 by deleting the least
significant fractional bit. If the answer is to be expressed in real de-
cimal, then it should be multiplied by (2-1), the new quantization inter-
val after truncation. The original number is represented in the second
row and the final answer in the fourth row of Table 3-1.

TABLE 3-1
INTEGER PROGRAMMING TECHNIQUE ILLUSTRATION

Real Real Integer Integer Q.I
Decimal Two's Two's Decimal

Complement Complement

+0.25 0.01 001 1 2-2

-0.25 1.11 i1 7 2-2

+1.5 01.1 Oil 3 21

-1.5 10.1 101 5 2-1

The above example illustrates that it is essential to use the proper
quantization intervals to convert numbers from integer decimal notation
to real decimal and vice versa, before and after undergoing an arithmetic
operation. If two fractional numbers are multiplied together then the
quantization interval of the product is the product of the quantization
intervals of the two numbers. The next section will show how the simu-
lation routines keep track and make use of the appropriate quantization
intervals and levels.
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3.1.2 Flow Chart of Simulation Program

In this section the MAIN program and the subroutine STARTQ are de-
scribed. The subroutine STARTQ is the first step implemented by the MAIN
program to read all input parameters, compute data for clutter generation,
and quantize the filter coefficients. It does not perform any special
task and normally this would be done in a MAIN program itself, hence the
MAIN and STARTQ are described together. Next,the group of routines which
simulate the basic binary arithmetic operations such as input and co-
efficient quantization, addition, multiplication, etc. are described.
This is followed by a description of routines which simulate the system
functions such as signal and clutter generation, digital filter, RMS
unit, etc. An effort is made to emphasize features which have been added
to the basic program [14] and those not already apparent from the discus-
sion of the program in Reference [14]. Detailed flow charts were devel-
oped for this purpose.

The objective of the program is to simulate the fixed-point proces-
sor shown in Fig. 2.1 and Fig. 2.3 and generate results that can be used
in a statistical study of quantization errors. The flow charts for the
MAIN program and the subroutine STARTQ are shown in Figs. 3.1 and 3.2
respectively. The simulation is performed over NDWEL antenna dwellV each
containing NPULSE signal-plus-clutter samples per range bin. NPULSE is a
product of NDELAY, the number of filter coefficients, and NCYCLE, the num-
ber of residues to be integrated. It is a system requirement that NPULSE
be less than 48. The MAIN program calls STARTQ to start the simulation
by reading in clutter, signal, radar and filter parameters which are sub-
sequently printed out. These parameters are explained in Appendix E with
the details of how they are specified on input cards. Next, STARTQ calls
the subroutine COEF to quantize the filter coefficients and print the un-
quantized and quantized values. Then, a set of Gaussian random samples
are generated by calling the subroutines ANIT and RANM. The impulse
response of the digital filter used in the clutter generation is calcu-
lated. The purpose of this filter is to yield clutter samples with a
desired power spectrum from the input Gaussian samples. The clutter
filtering is implemented in subroutine UPDATQ. STARTQ also generates
scale factors for signal and clutter combination. After this the control
reverts back to the MAIN program and all the parameters read and computed
by STARTQ are transferred to MAIN. The MAIN program next reads the
parameters which control RMS-statistics-print, clutter and theoretical
output options. The second option controls whether clutter is to be
added to the doppler signal or not. The third option determines whether
the theoretical output (infinite precision answer) is to be computed with
a quantized or an unquantized set of filter coefficients. If the un-
quantized set is used then a valid basis for comparison between the fixed-
point 3nd floating-point processor statistics can be provided. This fol-
lows because the quantization error introduced for the same number of co-
efficient bits and the same set of coefficients is different for the two
processors. The MAIN program simulates only one system block, viz., the
integrator. All the other system blocks and functions are delegated to
different subprograms. The MAIN program calculates the statistics for
the hardware RMS unit output at the end of each residue or cycle. The
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same is also calculated for the output of an imaginary perfect RMS unit.
The statistics involve computation of the maximum, the minimum, the
mean and the variance of the error in the output. The error is defined
dS the actual output minus the theoretical output (see Equations 2.3,
2.6, 2.8, 2.12). The statistics for the difference between the hardware
and perfect RMS outputs are also computed. A similar statistical analysis
is carried out on the integrator outputs, i.e., at the end of each antenna
dwell. Note that the simulation results presented in Section 3.2 pertain
to the integrator output statistics. The nature of the statistics is
biased, i.e., the definition of variance is,

ax2 =1 N 2 (34)
i l(x . (3.4)
1=1

as given in reference [15]. The MAIN program gives an indication if an
overflow occurred in the filter or integrator operation and also the
total number of A/D saturations over all dwells. The MAIN program calls
the subroutine RANDU for picking a uniformly distributed random phase
starting angle for the doppler signal. The subroutines RANDU and RANDM
are not described in this report because they are canned programs which
depend on the host computer being used.

The subroutine IAD simulates the A/D converter scheme given by
Equation 3.1 and Fig. 3.1 of Reference [14]. This scheme represents the
actual 'Computer Labs - A/D Converter Model - 5905' being used by the
Radar Technology Branch of the U.S. Army Missile Command at Huntsville.
Note that the output of the A/D converter is in two's complement binary
form with a unique "offset", i.e., the quanti:aion intervals are centered
at ±QI/2, ±3QI/2, ±5QI/2 and so on. Normally one would expect the quanti-
zation intervals to be centered at 0.0, ±QI, ±2QI, ±3QI and so on [16].
For an "ideal" 3-bit A/D converter equal and opposite analog voltages if
added after conversion to two's complement numbers yield a zero result
if the carry is ignored, e.g., when QI=0.25,

+ 0.125 = 0012 4 0.375 = '2

- 0.125 = 1112 - 0.375 = 110 2

sum 0.000 = 1)0002 , 0.000 = 1)0002

For a 3-bit A/D converter with the actual offset scheme being used,

+ 0.125 = 0002 + 0.375 = 0012

- 0.125 = 1112 - 0.375 = 1102

sum 0.000 111 2  , 0.000 1 1112

The sum in this case dues not result in a zero. This is a disadvantage
of the A/D scheme being used, however, once the output numbers are avail-
able they are treated as two's complement numbers. Although these numbers
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contain the 'offset', no correction is applied because the actual hard-
ware system [1] is built in this manner. The flow chart for the sub-
routine IAD is shown in Fig. 3.3. Note that it gives a saturation indi-
cation if

xi 1.0 , (3.5)

where x is the input analog signal sample.
The flow chart fcr subroutine COEF is shown in Fig. 3.4. COEF

quantizes a filter coefficient to a specified bit-length. The routine
requires that the quantization interval and the level be specified. Note
that it uses a round off procedure which increases the magnitude of the
number by one if the remainder of the number after integer quantization
is greater than or equal to a half quantization interval (see flow chart
for details).

The simulation of two's complement addition is implemented by the
subroutine ADD. Two numbers in two's complement 'integer decimal' form
with the same level are added, the carry is ignored, and any overflow is
detected and a flag is set by this routine. The Flow chart is shown in
Fig. 3.5.

The function subprogram MUL simoulates two's complement multiplication.
The flow chart is shown in Fig. 3.6. The two numbers are first converted
to sign magnitude representation (in decimal integers), iultiplied and
then converted back to the two's complement 'integer de.:imal' form.

For word-length truncation and expansion a function subprogram ITREX
was used which truncates the least significant fractional bits and expands
at the most significant integer end. The expansion for a positive number
involves appending zeros and that for a nv'gative number involves ones at
the most significant integer end. The extent of truncation or expansion
is specified by levels. If the number to be truncated or expanded does
not have a sign bit it is essential to compute the level by adding a
fictitous sign bit to the actual bit-length. The flow chart for ITREX is
shown in Fig. 3.7.

The function subprogram MAGNF finds the magnitude of a two's comple-
mert number and expresses it as a positive decimal integer. Its flow
chart is shown in Fig. 3.8. Note that it rounds up a negative number if
it is the largest negative nuiiber representable in the two's complement
scheme (LEVEL/2) to avoid a zero output. As for example, for a 3-bit
number (LEVEL/2) = 1002. This needs to be rounded up to lOl2 to avoid a
zero output.

For each antenna dwell the MAIN program calls the subroutine UPDATQ
once to generate NPULSE samples of clutter for each of the I and the Q
channel filters. UPDATQ uses the 1024 Gaussian random samples generated
by STARTQ. It uses INCGAU samples (a subset of the above 1024) for each
dwell. INCGAU is calculated by STARTQ and depends on clutter and system
parameters. If all the samples generated by 'TARTQ are exhausted it
calls RANDM and generates 1024 more Gaussian samples. It then convolves
INCGAU/2 samples with the clutter model filter impulse response (generated
by STARTQ) and generates a set of NPULSE clutter samples shaped according
to the desired power spectrum. This process is duplicated for the Q chan-
nel as can be seen in the flow chart in Fig. 3.9.
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Output Vaiale 7
N3, Ijj

Fig. 3.5 (Continued)
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IInput Variables: Ni, N2,

LEVELl, LEVEL2

__~I
Sign Bits MAXI = LEVELl/2
MAX2 = LEVEL2/2

Convert Ni and N2 to Signed~
Decimal Integers NS1 and

ves

NSl = Ni LEVEL1

Fig. 3.6 Flow Chart for Function Subiorogram ?MUL
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NS2 = N2- LEVEL2

MLJL = (Ns1) X (NS2)
Next convert ?IUL

to Two's Complement

MUL = MUL +
(LEVELl) x (MAX2)

Output Variable: MUL

Fig. 3.6 (Continued)
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; Input Variables: IN,
LEVLIN, LEVLTR, LEVLOUT-

Truncate the least signifi-
cant fractional bits.
ITREX = IN/(LEVLIN)/LEVLTR)

Expand at the most signifi-
cant inteqer end. Check if
no. is positive or neqative

I J No (Neqa tive)

REX < R~Append 1's

>Yes( Pos iti ve)
... (P Apend--O's

rITREX= ITREX+LEVLOUT- LEVLTR

Output Variable: ITREX

Fig. 3.7 Flow Chart for Function Subprogram ITREX
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GIN

Input Variables: IN, LEVEL J

To find the magnitude of a
Two's Complement number
expressed in Integer Deci-
mal notation

Yes

Largest negative number in
Two's Complement. Round it
up. IN = IN + 1

MAGNF IN

Next check if negative

Fig. 3.8 Flow Chart for Function Subprogram MAGNF

56



n

Yes (Positive)

MAGNF < LEVEL/2

No (Neqative)

MAGNF = LEVEL - MAGNF

Output Variable: MAGNF

RETURN

Fig. 3.8 (Continued)
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Input Variables: XN, IN, H,
INCGAU, ITI, NPULSE

__*_
E DATA KIOI

Initialize CI and CQ array[to zeros

Generate N
Gaussian tsampl1es

CALL RANOM
(XN, N, 0.0, 1.0)

Pi~k NG Gaussian sam-
ples ---M I

0
Fig. 3.9 Flow Chart for Subroutine UPDATO
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1  K+INGAU; JO INCGAU/21

±1 1

Convolution
indexes

JINC = (I - 1)/ITI

IM = I - JINC*ITI
= (6 J ) *ITI + IM

JP 3J+J INC
__________~Filter Gaussian

IOL)= CI ()+ XNT(JP)*H(M)
CQ(I) CQ(I )+XNT(JP+JQ)*H(M)I

No

Fig. 3.9 (Continued)
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es

Fig. 3.9 (Continued)
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For each residue (o- cycle) the MAIN program calls the subroutine
PULSEQ once to generate NDELAY samples of signal using the starting phase
picked by MAIN for the first sample of the first residue. For each sub-
sequent sample the phase is incremented by

2T Doppler freqlency
Pulse Repetition frequency J

If clutter is to be added, NDELAY out of NPULSE samples of clutter gen-
erated by UPDATQ are utilized. For the next cycle the next consecutive
set of NDELAY samples are used. The flow chart for PULSEQ is shown in
Fig. 3.10.

The subroutine FILTNQ simulates the fixed-window non-recursive MTI
filter being used. FILTNQ is used for both the in-phase and the quadra-
ture channel filtering. As can be seen from the flow chart in Fig. 3.11,
it makes use of the subprograms IAD, MUL, ITREX, ADD and MAGNF for all
the computations. IAD converts the analog signal sample provided by
PULSEQ to a two's complement number, MUL multiplies it by the respective
quantized filter coefficient, ITREX truncates and expands the product,
ADD accumulates NDELAY such products and finally MAGNF gives the magnitude
of the filter accumulator after NDELAY additions. FILTNO also counts the
number of A/D saturations and the number of addition overflows.

The function subprogram IRMSA is flow charted in Fig. 3.12 and im-
plements the hardware RMS approximation algorithm. The algorithm is out-
lined by Equation 2.2.

The integrator simply accumulates the RMS outputs and is implemented
by the MAIN program by using ADD.

3.1.3 Suggestions for Improvement

From the point of view of increasing the speed and efficiency of
computation the following improvements in the simulation package are in
order:

1) Since STARTQ is used once only in the entire simulation
of NDWEL dwells and does not perform a repetitive task
it ought to be eliminated as a subroutine. By making it
a part of the MAIN program the time lost in calling
STARTQ and transferring all the parameters read and com-
puted by STARTQ to MAIN can be saved.

2) STARTQ and UPDATQ generate Gaussian random samples and
convert them to clutter samples even when clutter is not
to be used in the simulation. The time lost in this can
be saved by bypassing these steps if clutter is not to
be used.

3) Presently STARTQ generates 1024 Gaussian random samples
and for each dwell UPDATQ tests if more are necessary
and if so generates 1024 more samples. A better way
would be to generate the exact number of samples neces-
sary for each dwell by UPDATQ itself.
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Input Variables: NDELAY,
JADCLU, ICLUT, PHASE, CI,
CQ, FDOP, DELT, AS, BS, j
_CS. DS . .

Define PI and compute 2PI I

PI/2, 2PI/3
IDEL = 0

IDEL = IDEL + 1
ICLUT = ICLUT + 1
PHASE = PHASE +
2 * DOP*DELT

r Compute DPHASE from PHASE
0 < DPHASE <2 *PI

Define CAS for I channel
and define DAS for Q
channel

XI(IDEL) = CAS*COS(DPHASE)
XQ(IDEL) DAS*SIN(DPHASE)

Fig. 3.10 Flow Chart ,or Subroutine PULSEO
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r

Yes
JADCLU -0

Add No Y
C1lut ter

XI(IDEL) =XI(IDEL)+

BS + CS* CI(ICLUT)

[ XO(IDFL) =XQ(IDEL) +
BS - CS *CQ(ICLUT)

Fig. .10 Contnued
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BEIN

Input Variables: X, ICONST,
LEVELX, LEVELC, LEVELT,
NOELAY, LEVELF

QX = 2 * /Float(LEVELX)
QC = 2 * /Float(LEVELC)
QT = 2 * /Float(LEVELT)

LEVELM=(LEVELX)*(LEVELC/2)

Overflow Counter NACOFL = 0
A/D Saturation Counter

NSAT =0
Coefficient Counter

IDELAY =0
Accumulator Sum IACC =0

IDELAY =IDELAY + 1 J
A/D IConversion of signal sample

ICALL IAD(X(IDELAY),IXO,

NSAT = NSAT + 1S AT* Multiolication by filter coefficient

(IDELPY), LEVELX, LEVE LC)1

Fig. 3.11 Flow~ Chart for "'u'-jroutine FiLTNQ
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runctionand Expansion of ProductIINT =ITREX(IMUL, LEVELM, 1
LEVELT, LEVELF)j

Accumulation IICALL ADD(IACC, IMT, IAcc,I
IACOFL, LEVELF)

I
NACOFL = NACOFL + IACOFL

Find the?
magnitude of the Yes
filter output

INRMS =MAGNF(IACC, LEVELF)

Z7F--u
Output Variables: INRMS,

NSAT, NACOFL

RET URN

Fig. 3.11 (Continued)
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Input Variables: INI, INQj

D etermie larqer inmnout I I
and smal1ler input ISJ

[ IS016 =ISOB/2
IS3016 = IS08 + 1S016

Yes

L , 0.5

IRMSA = IS3016 + IL

Fig. 3.12 Flow Chart for Function Suboroqram IRMSA
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IL04 = IL02/2
IL304 = IL02 + IL04

IS02 = IS/2
IS1116 I S3016 + IS02

j IRMSA IS1 + IL304

output Variable: IF.MSA ]

Fig. 3.12 (Continued)
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4) The subroutine ANIT is used to set up an initial value
when RANDM is called for the first time. There is no
need for a special routine for this purpose, it can be
incorporated in UPDATQ itself.

The above suggestions were incorporated in a trial program and did
result in a considerable saving of computer time for a typical run. They
were not made a permanent feature of the fixed-point simulation package
but were utilized while constructing the floating-point simulation pack-
age.

3.2 DISCUSSION OF SIMULATION RESULTS

The effect of different host computers on the simulation results is
discussed briefly in Section 3.2.1. In Section 3.2.2 simulation results
obtained with the UNIVAC 1110 system are presented graphically. Finally,
a comparison is made between the theoretical results of Chapter 2 and the
simulation results presented in this chapter.

3.2.1 Simulation Results from Different Host Computers

The original fixed-point filter siriulation program was developed by
the UAH Communications Group [14] on an unknown computer system. After
that the program was modified to accommodate quantization error study [8]
and used to obtain results on a CDC-3600 computer system. On this system
the program used a canned routine RANF to generate uniformly distributed
random phase values. When the program was made compatible with the
UNIVAC 1110 system another canned routine RANDU was used for the same
purpose. The starting value and the listing for RANDU appear in Appendix
E. Apparantly RANF had a built in starting value but its listing was un-
available, qo any differences between the two could not be compared. The
effect of this was seen primarily in the number of A/D converter satura-
tions when clutter was added to signal samples. This made for some small
but significant changes in the results. Also, it is conjectured that the
software algorithms used by the two systems for calculating library func-
tions such as sine, cosine (which are very important for signal genera-
tion), log, etc., differ in accuracy and make for soni changes in the re-
sult. However, the results from the two systems followed the same trends
very closely. The minor deviations were observed at

1) extremely low doppler frequencies,
2) doppler frequencies very close to half the pulse

repetition frequency, and
3) very small truncated product bit-lengths.

A detailed comparison can be made by comparing the results documented in
reference [8] and those in the next section.
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3.2.2 Graphical Presentation of Simulation Results

Simulation results were obtained for the sets of nine and five fil-
ter coefficients shown in Table 3-2. Results for the nine coefficient
case are discussed first.

TABLE 3-2

FILTER COEFFICIENT SETS

9 - Tap 5 - Tap

- 0.159480 - 0.280040

- 0.089430 - 0.163400

- 0.105110 0.888680

- 0.115390 - 0.163400

0.940430 - 0.280040

- 0 115390

- 0.105110

- 0.089430

- 0.159480

The average error for the hardware RMS and perfect RMS implementations
as a function of doppler frequency are plotted in Fig. 3.13, for three dif-
ferent signal amplitudes and no clutter. The ripple effect in the hard-
ware RMS cases is explained by the fact that the MTI digital filter re-
sponse has local peaks at 750 and 1900 Hz and local minima at 1500 and 2400
Hz. The ripple in the perfect RMS case does not closely correlate with the
filter response curve. Also, the perfect RMS has negative average errors
for some cases while the hardware RMS has positive average error for all
cases. The increase in the magnitude of the average error for extremely
low frequencies in the stopband has not been explained.

Fig. 3.14 presents the variance results as a function of frequency
for the same cases mentioned above. The hardware RMS cases show much more
variation than their counterparts in Fig. 3.13. There is a strong ampli-
tude dependence for the hardware RMS cases while the perfect RMS cases do
not show such a strong amplitude dependence. Note that the perfect RMS
cases are closely grouped together.

The minimum, maximum and average errors are shown in Figs. 3.15 and
3.16 for signal amplitudes of 0.025 and 0.413 volts respectively, with
no clutter and for the hardware RMS algorithm. Note that the mtddle of
the extreme values is in general agreement with the average value. This
suggests a symmetrical distribution about the mean for the error proba-
bility density function.

Next, the average error and variance as functions of truncated pro-
duct bit-length MT for the hardware algorithm with a doppler frequency of
1500 Hz, are shown in Figs. 3.17 and 3.18. The cases for five different
signal amplitudes without clutter are shown. It is to be expected that
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5

0-2

5 Negative values are indicated
by x. The dashed lines indicate
positive-negative transitions.

2

(0.025, P)

(0.996,P)

Legend: (x,y)

5 x = Signal Amplitude, volts
y = H for Hardware RMS

P for Perfect RMS (0, Y,1 3,9P)

2I

0 500 1000o 1500 2 00 2500
Doppler Frequency (Hz)

FIg. 3.13 Average Error as Function of Doppler Frpe/u'_nicy (9-Tap Fixed-
P oint Siriulation Results, No Clutter, MX MC =9qM Iv 17, MF MK 20,

r 24)
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2

1I0- 3

5

2 (0.996)

10-

5
(0.413)

2

0996)(.43

5

" I' ' 0.025)5

"i, i /Legend: (x)
10- x = Signal Amplitude volts

0 _ Hardware RMS
---- Perfect RMS

4xl0O I I I -I--
0 500 1000 1500 2000 2500

Doppler Frequency (Hz)

Fig. 3.14 Variance as Function of Doppler Frequency (9-Tap Fixed-Point
Simulation Results, No Clutter, MX =MC =9, MT = 17, MF = E=20,
MS = 24)
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0.Maximum Error

0.006

0.006

Signal Amplitude =0.025V

0.004

Middle of Extremes Average Error

0.002

LU0.

-0.002 -Minimum Error

-0.004

0 500 1opp0e 1500 2000 20
DplrFrequency (Hz)

Fig. 3.15 Hardware RHS Extreme and Average Error as Function of Doppler
Frequency (9-Tap Fixed-Paint Simulation Results, No Clutter, MX =MC = 9,
MT = 17, MF = ME =20, MS = 24)
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Signal Amplitude = 0.413V

0.06

0.04 -- Maximum Error

0.04

0.02 Average Error

Middle of Extremes\

0.0 1b
0

-0.02
Minimum Error

-0.04

0 500 1000 1500 2000 2500
Doppler Frequency (Hz)

Fig. 3.16 Hardware RMS Extreme and Average Error as Function of DopplerFrequency (9-Tap Fixed-Point Simulation Results, No Clutter, MX MC 9,
MT = 17, MF ME = 20, MIS 24)
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Note: Magnitudes are plotted. Negative values are
indicated by x. The dashed lines indicate

5 positive-negative transitions.

2 Signal Amplitude, Volts

0.413

10-2 / 0.300

~0.200

5

0.125

00.025
~-2

> 3

5

2

8 10 12 14 16
Truncated Product Bit-lencith, MT

Fig. 3.17 Hardware RMS Average Error ds Function of Truncated Product
Bit-length (9-Tap Fixed-Point Simulation Results, No Clutter, Doppler
Frequency =1500 Hz, MX = MC = 9, MF =ME =20, MS =24)

74



2 (0.200, 0.413)

0.125, 0.300)

10 o3  Legend: (x)
x Signal Amplitude, Volts

5

(0.025)

2

10

.a 5

(0.300)

10- (0.200)

(0.125)

5xl10 6

(0.025)

8 10 12 14 16
Truncated Product Bit-length, MT

Fig. 3.18 Hardware RMS Variance as function of Truncated Product Bit-
length (9-Tap Fixed-Point Simulation Results, No Clutter, Doppler Frequen-
cy =1500 Hz, MX = MC =9, MF = ME = 20, MS = 24)
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so

with increasing amplitude the average error and especially the variance
would increase since the predominant contributor to these is the RMS unit.
The output of the RMS uni' increase. with signal amplitude and the error
introduced by it is a ranuom multiplicative error which increases with
the signal amplitude. Note that both positive and negative values of
average error are present and that break points are between product
lengths of 9 and 12 bits. For each signal amplitude in Figs. 3.17 and
3.18 the no clutter and extreme clutter (as explained below) cases are
prese-ited in Fig. 3.19 to 3.28. Alternately they give the average error
and variance for the hardware RMS case. Five different signal-to-clutter
piwer ratios were tried, viz., +3.0 dB, 0.0 db, -3.0 dB, -10.0 dB and
-20.0 dB. For each signal amplitude the most negative ratio that did not
show ary A/D saturations or a-very minimal number of saturations was
chosen for presentation. Results from all the other signal-to-clutter
ratios higher than this extreme case were bounded between the no clutter
and extreme clutter cases. It needs to be borne in mind that a total of
45,000 signal plus clutter samples are used in a simulation with 500
dwells, 9 coefficients and 5 residues. From Fig. 3.19 to Fig. 3.28 it
is difficult to generalize about the behavior of the averaqe error curves
as a function of signal amplitude and the relation between the no clutter
and extreme clutter cases. But, the variance curves show a very distinct
trend. For each signal amplitude the variance for the extreme clutter
case is higher than the no clutter case. This seems to be due to the
added contribution of the clutter variance to the RMS output and other
quantization noise variaoices. The extent of deviation from the no clutter
case is approximately of the same order of magnitude except in the cases
of signal amplitudes 0.200 and 0.413. But, both these cases exhibit some
amount of A/D saturation which is tairly minimal and the curves do follow
the same general trend.

For the case (f MT=17 the effect of the signal amplitude on hardware
RMS algorithm averige error and variance are shown in Figs. 3.29 and 3.30.
Each figure has thJ no clutter curve as a reference and the excursions due
to different signal-to-clutter ratios are indicated. It is seen that when
clutter does not cause excessive A/D saturations, the clutter cases are
grouped together and their deviation from the no clutter case decreases
as the signal amplitude increases.

Next, the results for the five coefficient case are presented. Fig-
ires 3.3, cnd 3.32 present data similar to the Figures 3.17 and 3.18
which are for the nine coefficient case. The hardware RMS algorithm
average error and variance increase with icreasing signal amplitude just
like the nine coefficient case. The average error again shows both posi-
tive and negative values and the break points are between pro6uct lengbts
of 9 and 13. Th five coefficient case values arc about an order of mag-
nitude larger than the nine coefficient cdse. This is to be expected
since the number of residues in this case is nine as opposed to five in
the previous case and this means an increased number of RMS outputs inte-
grated. Also, 1600 Hz represents a relative minimum in the frequency
repon-se of the ni1e coefficient filter whereas for the five coefficient
filter it is not a relative minimum and has a higher transfer.

Again Figi.res 3.33 to 3.42 present results in a manner similar to
that of igures 3.19 to 3.28 of the nine coefficient case. It is diffi-
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10-1 Note: Magnitudes are plotted. Negative values
are indicated by x. The dashed linesindicate positive-negative transitions.

5

Signed Anplitude = 0.025V

2

L10
- 2

0

LU

' 5

"C II I

I ItNoC 
ut e

% 
I tI I

103

I I -20.0 dB with Clutter
5xi0 4

8 10 12 14 16
Truncated Product Bit-length, MT

Fig. 3.19 Hardware RMS Average Error as Function of Truncated Product
Bit-length (9-Tap Fixed-Point Simulation Results, Doppler Frequency
1500 Hz, MX = MC = 9, MF = ME = 20, MS = 24)
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5

Siqnal mplitude 0.025V

21

104

5

oQ)
U

-20.0 dB with Clutter

510

5xlO_ 6No Clutter

8 10 12 14 16

Truncated Product Bit-length, ~W

Fig. 3.20 Hairdware RMS Variance as Function of Truncated Product Bit-

length '9-Tap Fixed-Point Simulation Results, Doppler Frequency H lz,

mx = IMC =9, IF = IME = 20, 'MS =24)
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Note: Magnitudes are plotted. Negative values

2.0 are indicated by x. The dashed lines
indicate positive-negative transitions.

1.5

Signal Amplitude = 0.125V.

9.0

8.0

7.0 -10.0 dB With Clutter

6.0

o 5.0

4.0

3.0-
2 .0

o-. 3 I

8 10 12 14 16
Truncated Product Bit-length, MT

Fig. 3.21 Hardware RMS Average Error as Function of Truncated Product
Bit-length (9-Tap Fixed-Point Simulation Results, Doppler Frequency
1500 Hz, MX = MC = 9, MF = ME = 20, MS = 24)
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2

10
-3

Signal Amplitude = 0.125V.

5

2

10-4

5

-10.0 dB With Clutter

510-5 No Clutter
5xlO "6 _

_ I I I I I I I . I II
8 10 12 14 15

Truncated Product Bit-length, MT
Fig. 3.22 Hardware RMS Variance as Function of Truncated Product Bit-
length (9-Tap Fixed-Point Simulation Results, Doppler Frequency = 1500 Hz,
MX = MC = 9, MF = ME = 20, MS = 24)
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Note: Magnitudes are plotted. Negative values
are indicated by x. The dashed lines

5 indicate positive-negative transitions.

Legend: (n)

n = Number of A/D Converter Saturations when

(269) Clutter is used.

2

(266)
Signal Amplitude = 0.200V.

10-2

S(255) No Clutter
L

'U
I--V 5

0)

(244) 
22)( (252)

2 (254 ) (269 )

S10.0 dB With Clutter
I

10-3  _

(262)

8 10 12 14 16
Truncated Product Bit-length, MT

Fig. 3.23 Hardware RMS Average Error as Function of Truncated Product
Bit-i ngth (9-Tap Fixed-Point Simulation Results, Doppler Frequency =
1500 Hz, MX = MC = 9, MF = ME = 20, MS = 24)
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Legend: (n)

n = Number of A/D Converter, Saturations when
5 Clutter is used.

(269)

2

10-3 (26)

5 (255) (269)(272) (268) (252)

-10.0 dB With Clutter

(254)

Signal Amplitude = 0.200V.

>10-4

5

2

No Clutter
lO SI I I I I I I I I

10-5
8 10 12 14 16

Truncated Product Bit-length, MT
Fig. 3.24 Hardware RMS Varience as Function of Truncated Product Bit-
length (9-Tap Fixed-Point Sin'ulation Results, Doppler Frequency = 1500 Hz,
MX = MC = 9, MF = ME = 20, MS = 24)
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(8) Note: Magnitudes are plotted. Negative values are

indicated by x. The dashed lines indicate
positive-negative transitions.2

-3.0 dB With Clutter
12(7)O-2  ()(8) (4) (10) (81

(8 ( ...........r

( 9)/,

'I Signal Amplitude = 0.300V.

2

01.

f .. 8)(8 Legend: (n)

n = Number of A/D Converter

S10-3 Saturations when Clutter
> I is used.

5
I

2xlO"

SI I I I I I I I
8 10 12 14 16

Truncated Product Bit-length, MT
Fig. 3.25 Hardware RMS Average Error as Function of Truncated Product
Bit-length (9-Tap Fixed-Point Simulation Results, Doppler Frequency =
1500 Hz, MX = MC= 9, MF = ME = 20, MS = 24)
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(8)/

Le 'Ii& (n)

' =Number uf A/D Converter Saturations when Cluttert0 -3 is used.

(7)
5 Signal Amplitude =0.300V.

2 (8)

0-4

U

(9)

5

(8)

-3.0 dB With Clutter

l 8 10 1421

Truncated Product Bit-length, MT
Fig. 3.26 Hardware RMS Variance as Function of Truncated Product Bit-
length (9-Tap Fixed-Point Simulation Results, Doppler Frequercy = 1500 Hz,

MX =MC = 9, MF = ME = 20, MS =24)
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3.0 Note: Magnitudes are plotted. Negative values
(38) are indicated by x. The dashed lines

indicate positive-negative transitions.

2.0

1.5 No Clutter

9.0 0- .0 dU With Clutter

8.0

7.0 -

6.0 - (34) Signal Amplitude = 0.413V.
1I

5.0 - Legend: (n)

4.0 n = Number of A/D Converter
S40Saturations when Clutter is

used.

S3.0> 113

I 

I

2.0

1.5

10- 3

8 10 12 14 16
Truncated Product Bit-length, MT

Fig. 3.27 Hardware RMS Average Error as Function of Truncated Product
Bit-length (9-Tap Fixed-Point Simulation Results, Doppler Frequency =
1500 hz, MX = MC = 9, MF = ME = 20, MS = 24)
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(38)
2 Legend: (n)

n = Number of A/D Converter Saturations
when Clutter is used.

(34)
Signal Amplitude = 0.413V.

5

2 (38)

(34) 0,0 dB With Clutter

U (34) (34) (34)

> 10-
4
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(38)

(38) (38)

2x0"5  No Clutter

I I I ,, I I , , I I, I
8 10 12 14 16

Truncated Product Bit-length, MT
Fig. 3.28 Hardware RMS Variance as Function of Truncated Product Bit-
length (9-Tap Fixed-Point Simulation Results, Doppler Frequency = 1500 Hz,
MX = MC = 9, MF = ME = 20, MS = 24)
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Legend: Signal-Clutter Ratio
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Signal Amplitude (Volts)

Fig. 3.29 Hardware RMS Average Error as Function of Signal Amplitude
(9-Tap Fixed-Point Simulation Results, Doppler Frequency = 1500 Hz,MX
MC = 9, MT = 17, MF = ME - 20, MS 24)



Legend: Signal-Clutter Ratio
o + 3.0 dB

2 A 0.0 dB

S - 3.0dB

10- 3 - -10.0 dB

1 -20.0 dB
5- A/D Saturations with

SCRDB, No. of
-10.0 dB, 252 Saturations.
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2

I I I ... I...
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Signal Amplitude (Volts)

Fig. 3.30 Hardware RMS Variance as Function of Signal Amplitude (9-Tap
Fixed-Point Simulation Results, Doppler Frequency = 1500 Hz, MX = MC = 9,
MT = 17, MF = M4E = 20, MS = 24)
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Note: Magnitudes are p'otted. Negative values are

indicated by x. The dashed lines indicate
10"- positive-negative transistions.

5 Signal Amplitude, Volts
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O. 300

2 -- 0 .200
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5xl10 4
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Truncated Product Bit-length, MT

Fig. 3.31 Hardware RMS Average Error as Function of Truncdted Product
Bit-length (5-Tap Fixed-Point Simulation Results, No Clutter, Doppler
Frequency = 1500 Hz, MX = MC = 9, MF = ME = 20, MS = 24)
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Fig. 3.32 Hardware RMS Variance as Function of Truncated Product Bit-
length (5-Tap Fixed-Point Simulation Results, No Clutter,. Doppler Frequen-
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Fig. 3.33 Hardware RMS Average Error as Function of Truncated Product
Bit-length (5-Tap Fixed-Point Simulation Results, Doppler Frequency
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Note: Magnitudes are plotted. Negative values are
indicated by x. The dashed lines indicate
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Fig. 3.35 Hardware RMS Average Error as Function of Truncated Product
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Note: Magnitudes are plotted. Negative values are
10-1 indicated by x. The dashed lines indicate

negative-positive transitions.
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Note: Magnitudes are plotted. Negative values are
indicated by x. The dashed lines indicate

10-1 positive-negative transitions.
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cult to generalize the trends in the avarde error but the variance
curves show a new trend. For each signal amplitude the variance curve
for the extreme clutter case now falls below the no clutter case. This
seems contrary to expectations. It may be due to statistical dependences
between the clutter, the RMS output and other quantization noise giving
rise to some large negative cross-product terms which may cause the clut-
ter case to fall below the no clutter case.

Figures 3.43 and 3.44 present data similar to Figures 3.29 and 3.30
and lead to the sani conclusions, i.e., the excursions due to the dif-
ferent signal-to-clutter ratios from the no clutter case decrease as the
signal amplitude increases. Also when clutter does not cause excessive
A/D saturations, the clutter ca.es for a specific signal amplitude are
grouped together.

3.2.3 Comparison of Theoretical and Simulation Results

A comparison is made between the theoretical and simulation results
for the following 9-Tap cases (where the doppler frequency is 1500 Hz).

1) Average error and variance as functions of truncated
product bit-length MT for signal amplitudes of 0.025V
and 0.413V.

2) Average error and variance as functions of signal
amplitude with the product hit-length Mr = 17.

First, for the signal amplitude of 0.025V, Fig. 3.19 gives the hard-
ware RMS average error as a function of MT. The theoretical upper bound
for this case is shown in Figures 2.4 and 2.5 as the curve corresponding
to ME=20. It is seen that for each value of MT in Fig. 3.19 the. simula-
tion results are at least an order of mac- tude higher than the lower
bound curve. The hardware RMS variance is shown in Fig. 3.20 and the
related bound curves are obtained from Fig. 2.10. The upper bound curve
is essentially the same for all ME>ll. For the entire range of MT values
the upper bound has values greater-than 0.0008 whereas the simulation re-
sults are all at least two orders of magnitude below this value. The
lower bound value is identically zero and hence is below the simulation
results.

For the signal amplitude of 0.413V the hardware RMS average error
as a function of truncated product bit-length is given in Fig. 3.27. The
corresponding upper bound values appear in Fig. 2.12 as the curve for
ME=20. Alternatively, in Fig. 2.13 the curve for ME=15 is approximately
the same as the curve for ME=20. For values of MT from 8 to 12 the upper
bound cur've is several orders of magnitude higher than the simulation re-
sults but, for values of MT from 12 to 17 the simulation results approach
closely the upper bound value but are always smaller than the bound. For
MT=17 where they are the closest the upper bound value is approximately
0.03 whereas the simulation value is 0.0135. Figure 2.14 shows a lower

bound average error curve for which ME=MT+3. This condition ensures that

no residue truncation error is produced at the integrator output. Conse-
quently, this curve can be used to compare to the simulation value of ME=
20. It is seen that the lower bound curve is lower than the simulation

101



t Legend: Signal-Clutter Ratio
5 0 +3.0 dB

0.0 dB
-3.0 dB

-10.0 dB
2 ci -20.0 dB

A/D Saturations with SCRDB, No. of Saturations.

10-1 NEG =Negative Value.

5

0. B,30

0-2

No Clutter

2 1-

0.0 0.1 0.2 0.3 0.4 0.5
Signal Amplitude (Volts)

Fig. 3.43 Hardware RMS Average Error as Function of Signal Amplitude
(5-Tap Fixed-Point Simulation Results, Doppler Frequency =1500 Hz,

MX = MC=9, MT = 17,IF = 1E =20, MS = 24)

102



5 --

-3.0 dB, 1030

2

10-2 
-10.0 dB, 252

5 0.0 dB, 38

2 ,A -3.0 dB, 8

10-
' Legend: Signal-Clutter Ratio

5 -- 0 +3.0 dB

L 0.0 dB

El -3.0 dB
U

2 _~ -10.0 dB
"_ () -20.0 dB

N A/D Saturations with SCRDB,
__/ 4No. of Saturations.

No Clutter

5

2?

lo- s  I I I I I

0.0 0.1 0.2 0.3 0.4 0.5
Signal Amplitude (Volts)

Fig. 3.44 Hardware RIS Variance as Function of Signal Amplitude (5-Tap
Fixed-Point Simulation Rps Its, Doppler Frequency = 1500 Hz, MX = MC =9,
MT = 17, MF = ME = 20, MS 24)

103



results by a little less than an order of magnitude. The hardware RMS
variance is shown in Fig. 3.28 and the related bound curves in Fig. 2.16.
The upper bound curve (same as that for ME=9) is about three orders of
magnitude higher than the simulation results. The lower bound is identi-
cally zero and hence below the simulation results.

Next, the comparison is made for the error results with varying
signal amplitudes. The simulation results are for MT=17 and ME-20. The
hardware RMS average error is shown in Fig. 3.29. Figures 2.19 and 2.20
show bound curves for MT=13 and ME=16 and are very close to the bound
curves for Kr=17 and ME-20. It is seen that for low signal amplitudes
the simulation results are about an order of magnitude below the upper
bound. However, as the signal amplitude increases the simulation results
converge towards the upper bounds. At the closest point the upper bound
value is approximately 0.03 whereas the simulation value is 0.0135. The
lower bound curve stays at least an order of magnitude below the simula-
tion results. These observations hold for the simulation results with
and without clutter. A similar comparison for the variance values can bE
made with the help of the simulation results of Fig. 3.30 and the bound
results of Fig. 2.21. The upper bound curve is at least three orders of
magnitude higher than the no clutter simulation curve. The simulation
results with clutter also fall below the bound curve with the exception
of one case, viz., signal amplitude of 0.300V and signal-to-clutter power
ratio of -10.0 dB. This is accounted for by the fact that a large number
of A/D saturations occurred. The variance lower bound is identically
zero, thus it bounds all the srnulation results.
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CHAPTER 4

FLOATING-POINT AND BLOCK-FLOATING-POINT PROCESSORS
by Brian P. Holt

4.1 GENERAL FLOATING-POINT CONSIDERATIONS

In fixed-point realizations of the moving target indicator (MTI)
portion of the DSP system it is convenient to think of the numbers as
fractions. The product of to numbers is then also a fraction and the
least significant bits of the product can be truncated or rounded to
maintain a given word length. The result of an addition need not be
truncated or rounded to maintain the word length; however, it is possible
that the sum exceet.s unity in which case an overflow has occurred. Thus
it is essential to scale the inputs to the MTI by an appropriate factor
to insure that overflows do ,ut occu; or, conversely, to use processor
word lengths based on maximum allowable input values.

The dynamic range limitations of a fixed-point MTI proce' sor can be
overcome by using flodting-point arithmetic. In the following sections
floating-point representation of binary numbers is introduced and the
operations required to implement floating-point arithmetic are examined.
The focus of th discussion is on signed magnitude, one's complement and
two's complement schemes. Other notations are discussed only if they
may offer significant advantages in performing a particular operation.
It is assumed that the reader is fami ,'ir with signed magnitude, one's
complement and two's complement numbers a: discussed in the literature
[17,18]. In the following discussion the most significant digit (MSD) of
each binary number is the sign bit.

4.1.1 Representing Floating-Point Numbers

A binary number is expressed in floating-point form as
M • 2

C

where M, the mantissa, is a positive or negative real number and C, the

characteristic (often called the exponent), is an integer. Using this
broad definition, a given number can have several floating-point repre-
sentations. For example, the decimal number +0.75 could be represented
as follows.

BINARY NUMBER INTERPRFTATION

0.1102 * 20 +3/4 •1 = +3/4

0.0112 * 21 +3/8 - 2 = +3/4

01.1002 * 2-1 +3/2 • 1/2 = +3/4
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In signal processing applications it is convenient if the mantis;as
of floating point numbers are fractions. When a multiplication of two
numbers is performed (by multiplying the mantissas as fixed-point frac-
tions and adding the characteristics) the mantissa of the result is a
fraction (the location of the radix point is fixed). Truncation or round-
ing of the product is done by truncating or rounding the appropriate
number of bits from the mantissa just as if it were a fixed-point frac-
tion. Truncation and rounding introduce errors in the floating-point
representation of i number. (For a discussion of the statistics of trun-
cation and rounding errors in floating-point numbers see Appendix C.)
The magnitude of the resultant error is minimized if the floating-point
number is 'normalized', aq described in the following section, before
the truncation or rounding takes place.

4.1.2 Normalizing Floating-Point Numbers

A floating-point number is said to be normalized if

1/2 < IMI < 1 . (4.1)

Thus, a floating-point number is normalized by multiplying or dividing
the mantissa by 2 until its magnitude falls within the desired range.
By adding 1 to the characteristic for each division by 2 and subtracting
I for each multiplication, the overall value of the floating-point num-
ber is preserved. Table 4-1 shows fixed-point and normalized floating-
point representations of fractions in signed magnitude, one's complement
and two's complement notation. In the table, both the mantissa and the
characteristic of each floating point number are represented in the same
notation, i.e., signed magnitude, one's complement, etc. This need not
be the case. Often, hardware requirements can be reduced by using one
scheme for representing the mantissas and another for representation of
the characteristics.

According to the definition given above, the floating-point repre-
sentation of zero can never be normalized. However, it is often con-
venient to establish the convention that the floating-point representation
of zero is normalized by setting the characteristic to the most negative
value it can have. The reason for this is made clear in Section 4.1.4.

Shifting the bits of a binary number left one position relative to
the radix point is equivalent to multiplying the number by 2 and shifting
them right one position is equivalent to dividing by 2. Thus, normaliza-
tion can be accomplished by shifting the bits of the mantissa left or
right the appropriate number of positions and adjusting the characteris-
tic accordingly. If the mantissas of the numbers used are fractions, a
right shift is needed only when the result of an addition overflows into
the least significant integer position. Thus, at most one right shift
is needed and the sign bit then would occupy the vacated integer bit
position.

The algorithm for normalization of positive floating-point numbers
in all three notations of Table 4-1 is as follows.
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1. Thift the mantissa right or left until the
most significant 1 is to the immediate right
of the radix point.

2. Increase the characteristic by 1 for a right
shift and decrease it by 1 for each left
shift.

3. When the mantissa is shifted left a 0 is
brought into the vacated LSB position and any
0 shifted into the integer portion of the
mantissa is dropped.

For negative numbers the algorithm used for normalization depends upon
tho notation being used. Signed magnitude negative numbers are normal-
ized using the same algorithm used for positive numbers if we interpret
the phrase "most significant 1" to mean the most significant 1 excluding
the sign bit.

The rules for normalizing negative one's complement numbers are
summarized as follows.

1. Shift the mantissa right or left until the
most significant 0 is to the immediate right
of the radix point.

2. Increase the caracteristic by 1 for a right
shift and decrease it by 1 for each left
shift of the mantissa.

3. When the mantissa is shifted left a 1 is
brought into the vacated LSB position and
the 1 which was moved to the left of the
radix point is dropped.

The algorithm for normalizing two's complement negative numbers fol-
lows.

1. If the magnitude of the mantissa is a positive
or negative integer power of 2, shift the man-
tissa so that the most significant 1 (excluding
the sign bit) which has a 0 to its immediate
right is to the right of the radix point. If
tre mantissa contains only zeros shift right one
position and bring a 1 into the vacated MSB
position.

2. If the magnitude of the mantissa is not an
integer power of 2, shift the mantissa so that
the most significant 0 is to the right of the
radix point.

3. Increase the characteristic by 1 for a right
shift of the mantissa and decrease it by 1 for
each left shift.

4. When the mantissa is shifted left, any bit
shifted past the radix point is dropped and a
0 is brought into the vacated LSB position.
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The hardware for normalizing two's complement negative numbers is
conlicated by the fact that the algorithm used depends upon the magni-
t, je of the mantissa. By changing the rules for normalization of nega-
tive two's complement numbers this complication can be eliminated.

The definition of Equation (4.1) shall be changed for negative two's
complement numbers so that

1/2 < IMI ! 1 . (4.2)

This new definition makes use of the fact that the decimal number -1 can
be represented as a two's complement fraction (see the fixed-point
representations of Table 4-1). Using Equation (4.2) the rules for nor-
malizing negative two's complement numbers are as follows.

1. Shift the mantissa right or left until the
most significant 0 is to the immediate right
of the radix point.

2. Increase the characteristic by 1 for a right
shirt and decrease it by 1 for each left
shift o the mantissa.

3 When the man issa is shifted left a 0 is
brought into the vacated LSB position ?nd
the 1 which was moved to the left of the
radix point is dropped.

Table 4-2 shows the two's coi'-lement fixed-point and normalized floating-
point representation of numbers based on Equation (4.2).

For the remainder of this chapter and in the floating-point simula-
tion described in Chapter 6, negative two's complement numbers are nor-
malized using the alternative algorithm based on Equation (4.2).

4.1.2 Multiplication

Multiplication of floating-point numbers is accomplished by taking
the product of the mantissas of the two operands just as if they were
fixed-point numbers and summing the characteristics. It is not neces-
sary that the numbers to be multiplied be normalized but, as pointed out
previously, it is cesirable that the mantissas be fractions. If the :wo
numbers are normalized, however, the mantissa of the product will be a
fraction between 1/4 and 1 (except of course when either or both of the
operands are zero) and normalization of the result would never require a
right shift and at most one left shift of the mantissa.

4.1.3 Addition

Addition of positive and negative numbers in signed magnitude nota-
tion is complicated by the fact that both binary adders and subtractors
are required. Additional circuitry is also necessary for determining
the sign of the result. The use of one's complement or two's complement
numbers allows addition and subtraction operations to be carried out

109



TABLE 4-2 ALTERNATIVE TWO'S COMPLEMENT REPRESENTATION

Fraction 2's Comp. Fixed-Point 2's Comp. Floating-Point
M C

7/8 J.lll 0.111 000

6/8 0.110 0.110 000

5/8 0.101 0.101 000

4/8 0,100 0.100 000

3/8 0.011 0.110 Ill

2/8 0.010 0.100 Ill

1/8 0.001 0.100 110

+ 0 0.000 0.000 100

-1/8 1.111 1.000 101

-2/8 1.110 1.000 110

-3/8 1.101 1.010 Ill

-4/8 1.100 1.000 Ill

-5/8 1.011 1.011 000

-6/8 1.010 1.010 000

-7/8 1.001 1.001 000

-8/8 1.000 1.000 000
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usi,1g only adder circuitry. Furthermore, the sign of the result is de-
termined as a part of the additiun process. Thus the DSP would use a
complement system and this section is devoted to explaining floating-
point addition using one's complement and two's complement notations.

Floating-point numbers are added by summing the mantissas as if
they were fixed-point numbers. Recall that in adding two fixed-point
binary numbers, the radix points are first lined up si that bits with
equal weights, or positional coefficients, are added together and carries
are propagated to the column with the next higher weight. By shifting
the mantissa bits of the two floating-point numbers so that the charac-
teristics are made equal, the bits in corresponding columns of the man-
tissas have equal weights and can be added correctly. This process of
shifting the mantissa bits and adjusting the characteristics is called
'aligning' and is explained in Section 4.1.4. Once the two numbers are
aligned and the mantissas added, the characteristic of the sum is set
equal to the characteristics of the aligned numbers.

When one's complement or two's complement numbers are added, the
sign bits are treated as part of the arithmetic portion of the opereids
as illustrated by the following examples. Notice that in one's comple-
ment addition a carry propaqated out of the sign bit column is added to
the least significant bit of the sum and any carries thereby generated
are propagated forward. This peculiarity of one's complement addition is
called 'end-around carry'.

Case 1: Addition of a positive and negative number never results in

overflow.

Example 4-1: No overflow

One's Complement Decimal Two's Complement
l.1!Ol -2/16 1.ll10

+ 0.0001 +1/16 + 0.0001

0)1.1110 0)1.1111

1.1110 -1/16 1.1111

Example 4-2: No ovorflow

One's Complenment Decimal Two's Complement
1.1101 -2/16 1.1110

+ 0. 1000 8/16 + 0. 1000

1)0.0101 1)0.0110

M0llo 46/16 0.0110
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Case 2: Addition of two positive numbers results in overflow if the sign
bit of the result is 1.

Example 4-3: No overflow

One's Complement Decimal Two's Complement

0.1100 +12/16 0.1100

+ 0.0010 +2/16 + 0.0010

0)0.1110 0)0.1110

0.1110 +14/16 0.1110

Example 4-4: Overflow

One's Complement Decimal Two's Complement

0.1100 +12/16 0.1100
+ 0.1011 +11/16 + 0.1011

0)1.0111 0)1.0111

01.0111 +23/16 G1.0111

Case 3: Addition of two negative numbers results in overflow if the sign
bit of the result is 0.

Example 4-5: No overflow

One's Complement Decimal Two's Complement

1.1110 -1/16 1.1111

+ 1.1101 -2/16 + 1.1110

1)1.1011 1)1.1101
" i

1.1100 -3/16 1.1101

Example 4-6: Overflow

One's Complement Decimal Two's Complement

1.0011 -12/16 1.0100

+ 1.1010 -5/16 1.1011

1)0.1101 1)0.1111
L1
10.1110 -17/16 10.1IT

112



When an overflow occurs in the addition of two floating-point man-
tissas ds in Examples 4-4 and 4-6, the carry out of the sign column of
the two operands then becomes the sign of the result. The result is then
normalized by shifting the resultant sum to the right and ircreasing the
characteristic as explained in Section 4.1.2. If overflow did not occur,
it is possible that the mantissa will have to be shifted left and the
characteristic decreased until the magnitude of the mantissa is in the
appropriate range.

Another well known algorithm for detecting overflows in additions
involves comparing the carries into and out of the sign bit column [17].
If the two carries are not equal, then an overflow has occurred.

4.1.4 Aligning Floating-Point Numhers

In Section 4.1.3 it was stated that floating-point ndmbers must be
aligned prior to addition. In the following discussion it is assumed
that the two numbers to be aligned are in normalized form. (Although
this is not strictly necessary, it greatly simplifies the alignment
algorithm.)

The rules for aligning twu (normalized) floating-point numbers are
listed below.

1. The mantissa of the number with the smaller
characteristic is shifted right (and its
characteristic increased) by the number of
bit positions equal to the difference in the
two characteristics.

2. For one's and two's complement mantissas the
MSB position vacated b- a right shift is
filled by a bit equal to the sign bit, i.e.,
a 0 for positive numbers and a 1 for negative
numbers.

Table 4-3 gives several examples of the alignment process for both
one's complement and two's complement notation. Notice that each time
a mantissa is shifted right the LSB is truncated to maintain the original
word length. Parts (g) and (h) of Table 4-3 are included to illustrate
the motivation for normalizing the floating-point representation of zero
by setting the characteristic to the lowest value it can have (see
Section 4.1.2). This isures that when two floating-point numbers are to
be aligned, and one of them is zero, the mantissa of the nonzero number
will not be shifted (causing truncation errors) since its characteristic
cannot be the smaller of the two.
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4.2 GENERAL BLOCK-FLOATING-POINT CONSIDERATIONS

The motivation for using floating-point arithmetic in realizing the
MTI portion of the DSP is to overcome the dynamic range limitations of
fixed-point systems. Implementing floatiig-point arithmetic, however,
significantly increases the complexity of the processor hardware. An
alternative realization, block-floating-point, is a hybrid approach which
has some of the advantages of both fixed-point and floating-point struc-
tures. Oppenheim [19] has proposed and evaluated a structure for imple-
menting recursive digital filters using block-floating-point arithmetic.
His results, hoever, are not generally applicable to the fixed-window
MTI structure used in the radar signal processor.

In block-floating-point arithmetic all of the internediate values
are jointly normalized, i.e., they all have the same characteristic.
This is accomplished by sh.fting the bits of each number left one posi-
tion at a time until any one of the numbers is normalized according to
the rules of Section 4.1.2. The following table illustrates how several
positive numbers are jointly normalized.

JOINTLY NORMALIZED RESULT

ORIGINAL FIXED-POINT IUMBER MANTISSA CHARACTERISTIC

0.00111 0.01110 -1

0.00011 0.00110 -1

0.01010 0.10100 -1

0.00010 0 00100 -"

0.01100 0.11000 -1

The arithmetic operations of addition and multiplication are performed
in fixed-point arithmetic using the jointly normalized mantissas. The
characteristic is then used to scale the fixed-point output to give the
final fixed-poirnt result.

This joint normalization scheme appears to be particularly applicable
in schemes where a large number of intermediate results are stored and fed
back simultaneously. However, in the case where only one intermediate re-
sult is to be stored, such as in the fixed-window, multiple range bin MTI
(where cnly one intermediate result is stored per range bin) it does not
offer an,, significant advantages over floating-point realization. For
this reason, a hardware realization for a block-floating-point MTI pro-
cessor has not been proposed.

4.3 DESCRIPTION OF PROPOSED FLOATING-POINT PROCESSOR

In this section a floating-point configuration for realizing the
digital signal processor described in Section 2.l is proposed. Block
diagrams of the three major system divisions, viz., 1) the I and Q chan-
nel filters, 2) te RMS approximation circuit and 3) the post residue
integrator are presented and discussed. General requirements for imple-
menting the various subtasks are discussed but a detailed hardware design
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is not attempted.

4.3.1 Floating-Point Filter

Figure 4.1 shows a block diagram of the proposed floating-point im-
plementation of the I channel filter of the DSP (the Q channel is identi-
cal). The A/D converter outputs are in two's complement fixed-point form
as described in Section 3.1.2 and are supplied at a 5 MHz rate. The coef-
ficient mantissas are stored as 9 bit two's complement fractions. The
coefficient characteristics are stored, In magnitude form (no sign bit is
needed) since they will always be zero or negative. This is a result of
the requirement that the MTI filters have unity noise gain, i.e., the sum
of the squares of the coefficients is one [10]. Thus the coefficient val-
ues would all be less than one.

A correction circuit is used in corjunction with an 8 by 8.bit binary
multiplier to perform two's complement mnultiplication. This same multi-
plier scheme is presently used for multiplication in the fixed-point pro-
cessor at the Radar Technology Branch, U.S. Army Missile Command [1]. The
output of the multiplier is normalized prior to truncation in order to
minimize the magnitude of the truncation error.

Throughout the flopting-point processor , truncation is uised (instead
of rounding) when word lengths are reduced. Since rounding the mantissa
of a floating-point number could result in an overflow, extra hardware
would have to be included to normalize the result.

The product can be normalized in two ways as shown below.

1. Serial Approach
Load the mantissa into a parallel access serial shift
register and compare the most signifirant fractional
bit with the sign bit. If the most significant frac-
tional bit is equal to the sign bit the mantissa bits
are shifted left one position and the characteristic
is decremented by one. The compare and shift operation
is then repeated untli the most significant fractional
bit does not equal the mantissa sign bit.

2. Parallel Approach
The mantissa bits are loaded into a position scaler,
i.e., a shifting circuit which can shift the bits any
number of positions in one operation (for example the
Signetics 8243 Pnsition Scaler). The number of bit
position that the mantissa is shifted aiust be determined
by a circuit (such as ROM or PLA for example) which
counts the number of consecutive leading zeros in the
mantissa if the sign is positive and the number of con-
secutive one's if the sign is negative.

The serial approa%.i would require considerably less hardware than
the parallel approach. However, if the number of snifts needed for nor-
malization is large, the serial test and shift would have to be done at
high speed. For example, if 8 shift and test operations are required for
normalization in the serial approach, and normalization must be accom-
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plished in a maximum of 200 nanoseconds, then the test and shift opera-
tion would have to be accomplished at a 40 MHz rate.

The control block of Figure 4.1 calculates the difference in the
characteristics of the normclized product and the partial sum fed back
from the range bin accumulators. ontrol signals are then fed to the
alignment circuits and the characteristic of the sum is set equal to the
larger of the two characteristics. Shifting of the mantissas in the
alignment process can be done using a serial shift register or a position
scaler. If the serial approach is used, the same comments apply as those
concerning the normalization circuit speed.

The sum is then normalized (note that a right shift is required if
overflow occurs). The normalized sum is then stored in the range bin ac-
cumulators. After the appropriate numLer of cycles the two's complement
filter output mantissa is converted to magnitude form then sent to the
RMS circuit described in Section 4.3.2. Conversion of negative two's
complement numbers is accomplished by complementing each bit and adding
1 to the result. Special precautions are necessary to insure that the
two's complement mantissa representation of -1 is converted correctly.
For example, if the mantissa of the filter output was the two's comple-
ment number 1.0000 (-1 in decimal), then complementing each bit and add-
ing 1 would give the same two's complement number as a result. The cor-
recT magnitude would be obtained by shifting the mantissa bits right one
position (just as is done when an addition overflows) and increasing the
characteristic.

4.3.2 RMS Approximation Circuit

A block diagram of the proposed floating-point RMS approximation cir-
cuit is shown in Figure 4.2. The algorithm implemented is the two sector
approximation described in Section 2.1. The nomenclature of Table 4-4 is
used in the following discussion.

TABLE 4-4 RMS UNIT NOMENCLATURE

SYMBOL DESCRIPTION

Magnitude of the I channel
filter output (normalized)

IQI Magnitude of the Q channel
filter output (normalized)

L The larger of III and IQ1

S The smaller of III and IQI

M Mantissa of L (always positive)

Ms  Mantissa of S (always positive)

CL Characteristic of I.

CS Charact:?ristic of S
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Fig. 4.2 Floating-Point RMS Approximation Circuit.
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III and IQI are simultaneously fed to the III and IQI comparator and
the L and S gates. The comparator generates signals which cause L and S
to pass through the appropriate gates. CS is then increased by 1 (which
in effect multiplies S by 2) and a second comparison is made. The result
of the second comparison controls the functioning of the L and S compo-
nent blocks. If L > 2S, then ML is unchanged and 3/16 M5 is generated.
If, however, L < 2S, then 3/4 ML and 11/16 MS are generated.

Two different approaches could have been taken in generating the L
and S components as illustrated below.

Approach 1: Generate the components by operating only on the mantissas
of L and S.

COMPONENT TO BE GENERATED METHOD
M C

3/16 S (MS + MS/2)/8 Cs

11/16 S ((MS + MS/2)/4 + MS)/2 Cs

3/4 L (ML + ML/ 2)/2  CL

Approach 2: Generate the comoonents by operating on both the mantissas
and characteristics of I and S.

COMPONENT TO BE GENERATED METHOD

M C

3/16 S MS + MS/2 Cs - 3

11/16 S (MS + MS/2)/4 + Ms  Cs - 1

3/4 L ML + ML/ 2  CL ' 1

The first approach was chosen since it requires less hardware to implement
than the second approach. Normalization of the results of the first ap-
proach would also be simplified since none of the mantissas could overflow.
This is not true of the second anproach.

Since III and IQI are in normalized form, normalizing the scaled L
componen. will involve at most one left shift. Similarly, normalization
of the scaled S component would take at most three left shifts. Thus,
normalization could be done serially in a limited amount of time since
only a small number of shifts are involved. The alignment of the scaled
L and S components is accomplished in the same manner as the alignment
process described in Section 4.3.1.

Since ML and MS are always positive, their sum is in normalized form
unless an ovrflow occurs. Consequently, normalization of the sum would
involve at most a right shift of one position. After normalization, the
RMS output is sent to the post residue integrator.
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4.3.3 Post Residue Integrator

The floating-point post residue integrator block diagram is shown
in Figure 4.3. Tie inputs from the RMS unit are normalized positive
floating point numbers. The control and alignment blocks function in the
same manner as the control and alignment blocks of Figure 4.1. Since the
numbers to be added are always positive, the sum needs to be normalized
only if an overflow occurs.

After the required number of integrat'ons, the output of the inte-
grator is sent to t ie threshold detector. 7h, threshold detector indi-
cates the presence of a target if the integrator output exceeds the pre-
set threshold value.

4.4 ALTERNATIVES

Several alternatives are available for realizing the floating-point
MTI signal processor described in Section 4.3. Several of these alterna-
tives and their effect on the hardware r.omplexity are considered below:

1. The I an Q channel filter outputs could be converted to
fixed-point numbers and the RMS approximation and pos .
residue integration could then be realized using fixed-
point arithmetic. This configuration would allo" the
use of floating-point coefficients (thus reducing the
quantization error in the coefficients) but would require
less hardware than a complete floating-point system. For
example, of the six circuits of Figure 4.3 only the adder
and accumulator circuits would be required if fixed-point
arithmetic were used for the post residue integration.
Furthermore, six of the Jrcuits in Figure 4.2 would be
eliminated (three normalize circuits, two align circuits,
and the control circuit). This reduction in circuit com-
plexity would outweigh the added circuitry needed for the
conversion from floating-point to fixed point numbers.

2. The normalizing and aligning circuits could be combined.
Since both the normalizing and aligning processes involve
shifting of the mantiss. bits of the floating-point num-
bers, one bidirectional shift circuit could be configured
to perform both operations. The complexity of the control
circuitry would le increased and would be strongly dependent
on the number of bits used in the mantissas and characteriP-
tics but a net savings in hardware might be achieved.

3. Fixed-point coefficients could be used. The hardware re-
quired for determininq the characteristics of the products
in the I and Q channel filters would be simplified if fixed-
point coefficients were used. In this configuration, the
characteristic of the normalized product would be equal to
the negative of the number of left shifts performed in the
normalization. No sign bit would be required for the character-
istic of the product since it would always be < 0.
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The floating-point simulation described in Chapter 6
has an option which allows the use of fixed-point coef-
ficients. Therefore, simulation runs could be made to
determine the processor error performance for fixed-
point and floating-point coefficients. These results
would provide a basis for evaluating this alternative
configuration.

4. Time multiplexing could be used to reduce the hardware
complexity. Since the I and Q channel filters are
identical, it would be possible to reduce hardware re-
quirements by time-sharing some circuits. For example,
one circuit could perf'orm the magnitude conversion at
the output of both the I , nd Q filters. It might be
possible to multiplex other circuits such as the align-
ment control. Here agairn, the hardware tradeoffs are
strongly dependent on the word lengths necessary.

In most cases, the hardwafe complexity of the circuits is strongly
dependent upon the word lengths necessary to achieve a specified error
pe-formance. As the word lengths grow, a threshold is crossed where time
constraints no longer allow serial operation. At that point, the com-
plexity of the hardware rises significantly.

4.5 COMPARISON OF HARDWARE COMPLEXITY

The relative complexities of the hardware required to implement the
fixed-point and floating-point versions of tne MTI portion of te radar
signal processor vary with the particular configurations used. However,
the following general statements can be made:

1. The hardware required to implement the floating-point
processor is approximatcly 2 to 5 times gre ter than
thar. required in the fixed-point version.

2. The complexity of the floating-point hardware can be
reduced by approximately 1/4 if the mantissa bit lengths
are short enough that the aligning and normalizing opera-
tions can be done serially.

3. The amount of memory required for the fixed-point and
floating-point systems is about equal. Preliminary simu-
lation runs seem to indicate that fixed-point and floating-
point processors with similar error performance require
approximately equal word lengths (where the floating-point
word length is the total bits used in the mantissa and
characteristic).

More simulation runs need to be made in order to determine the bit
lengths required at various points in the floating-point processor that
are necessary to achieve specified error performance. Once these bit
lengths are known, an accurate crnxiparison of the actual integrated circuit
chip counts neressary for the fixed-point and floating-point systems can
be made.
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CHAPTER 5

THEORETICAL ANALYSIS OF FLOATING-POINT PROCESSOR
by Jerry D. Moore

5.1 OUTLINE OF ANALYSIS

The theoretical analysis of the floating-point DSP quantization
error is presented in this section. A system configuration as described
in Chapter 4 is used for the analysis. The pattern established in
Chapter 2 for the fixed-point processor is followed here, i.e., an out-
line is presented with the detailed derivations presented in an appendix.

The finite word lengths used in the DSP are identified in Fig. 5.1
and summarized in Table 5-1. It is important to notice that the A/D
converter has a fixed-point output containing MX bits, as was used in
the fixed-point analysis of Chapter 2. This choice was based on the
availability of fixed-point A/D converters and the limited access to
floating point A/D converters.

The output of the digital filter, w() is written as the sum of an
errorless output y() and the quantization error go, i.e.,

w(mN) = y(mN) + g(mN) , (5.1)

where

N-1
y(mN) = z h(n) x(mN - n) (5.2)

n=O

The N filter coefficients are represented by ho and the input samples by
x(). In Appendix C it is shown that

N-l
g(mN) = z h(n) [(eN-l-n - 1) x(mN - n)

n.0 (5.3)

+ 0 N-l-n e(mN - n)]

The 6n terms are the statistical parameters used to relate the floating
point quantization errors. An expression for this term is given in
Appendix C.

An expression for the output of the RMS unit (cf., Chapter 2
Equation (2.7)) is

r(mN) [I + y (mN)] :'Wl(mN) + wqZ(mN) . (5.4)

124



-4J

LAL

C) CL

LAL

U3U
w0

LLL

C

41

0

Li LJ
0 0)

9U. 0 .
LL rm 4J

X-. 4) tmL

'-0
fl) a. m.

04- 0

x 09

U-

125



TABLE 5-1

FLOATING POINT DSP WORD LENGTH

Symbol Description

MX A/D Converter fixed-point word length. Two's
complement form with 1 sign bit and MX - 1
fractional bits.

MCM Coefficient mantissa word length. Two's complement
form witn 1 sign bit and MCM - 1 fractional bits.

MCE Coefficient exponent word length. The exponent
is in integer form and will a lways be negative,
thus no sign bit is required.

MTM Truncated product mantissa word length. Two's
cGmplement form with I sign bit and MTM - 1
fractional bits.

MTE Truncated product exponent word length. Two's
complement integer form with 1 sign bit and MTE - I
integer bits.

MFM Range bin accumulator mantissa word length. Two's
complement form with 1 sign bit and MFM - 1
fractional bits.

MFE Range bin accumulator exponent word length. Two's
complement integer form with 1 sign bit and MFE - 1
integer bits.

MEM Truncated residue mantissa word length. Magnitude
form with MEM fractional bits. No sign bit is used.

MEE Truncated residue exponent word length. Two's
complement integer form with 1 sign bit and MEE - 1
integer bits.

MSM Integrator accumulator mantissa word length.
Magnitude form with MSM fractional bits. No sign
bit is used.

MSE Integrator accumulator exponent word length. Two's
-'lement integer form with 1 sign bit and MSE - 1
-eger bits.
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This term is truncated and then summed in the integrator to give

M
INT(M) = E r(mN) + eint (M) (5.5)

m=l

where the truncation and summing quantization error is (cf., Appendix C)

M-1
eint(M) Z ( rm - 1) r[(m + 1)N] (5.6)m=O

and erm represents the floating-pont error parameters as shown in
Appendix C.

As in Chapter 2, the integrator output can be expressed as an errorless
term, m'u, plus an error term, INTE(M), viz.,

INT(M) = M u + INTE(M) . (5.7)

Vie average integrator output error is

M
INTrM) = z r+ -int(M) - M u (5.8)

m=l

It has been shown in Appendix C that the variance of INTE() is equal to
the variance of INTO and that

2 M-1

0INTE [M + 2 ' (O r')] + a?m=O r(5.9)

From (5.6) it follows that

_____ ____ 2 2E2 = z {( Tr L(m + )N ( -er T Ir(m + 1)NJ}int m 0  m rm

M-1 M-1
ent= - 1) rL(rm + I)N] = (r - 1) , (5.10)it m=O m=O rm
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Abounding procedure necessary to evaluate i and r2, cf., (2.15),

(2.16), (2.17), and (2.18), i.e.,

(I + -w) Iu - V1 < F < (1 + -w)(u + V (5.11)
w Yw

where

and

TT-- (u - v) < 7 < (1 + Yw) u + (5.13)

After manipulation and use of (5.12)

< (I + w )(u + \/2 , (5.14)
w

r > SM [(1 + Yw )Iu -F, (I + Yw)ju - / I*13 (1.l5)

<_ 7(1+y) (u +2F 2 (5.16)

*F2 > ( +y w ( u - r2)2 5.17)

where SM[ ] indicates the smallest of the set.

It follows that

2-2 (5.18)

r - rmax rmin

and

arI > LA[(rmi n  - max)' 0] (5.19)

where LA[ ] indicates the largest of the set.

The determination of, the average value and variance of 
the error of

(5.8) and (5.9) thro'igh the use of (5.10), (5.14) - (5.19) thus depends

on the evaluation of g andy. It is shown in Appendix C that
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-=AN-1-_ A~ (70+"n (5.20)
g - z h(n) -l-n -1-n '

n=O

where A is the peak value of the sinusoidal doppler input to the filter,
ho represents the filter coefficients, and T+ and e- represent the
floating point error statisti-.s for positive and negative values of x0)
respectively. Also, it is shown in Appendix C that

A2 N-I N-i
F n=O k=O h(n)h(k)(-_n - -. n)(.lk - eNlk) (5.21)

n' k=O(.1ntk

Th 2I' - ( N-i-n + N-i-n)

The7 7 is the mean squared value of the quantization error associated
with the input signal x0.

Evaluations of the floating-point parameters orm and 6n and their
statistical values are given in Appendix C This concludes the analysis
for the floating-point processor. It is possible to predict and upper and
lower bound on Lhe integrator output average error and variance by using
the results of thif section. A computer program was written to implement
the equations of this analysis. The program listing is given in Appendix
D and was used to obtain the results presented in the next section.

5.2 GRAPHICAL PRESENTATION OF RESULTS

The computer program of Appendix D was used to obtain specific values
for the integrator oitput error statistics of a floating-point processor.
As in Chapter 2, the A/D converter word is a fi/ed-point word with MX = 9.
The coefficiprts were also treated as fixed-poini; words with MC = 9. This
choice results in simpler hardware requirements for the processor and
allows a convenient comparison with the fixed-point processor results.
The product truncation length is MT bits with MTM bits for the mantissa.
This quantity, MTM, is varied as is the integrator input word length man-
tissa, MEM. Other word lengths were fixed, viz., MFM = MTM and MSM = MEM
Such choices seem to be justified by hardware considerations. Many other
choices could be made.

129



The average error bounds are presented in Fig. 5.2 as a function of
MTM with MEM = 10. The bounds are not tight, but do become closer as the
signal amplitude is reduced. The bounds are not strongly dependent on
MTM for values between 11 and 15. The bounds do not appear to be as de-
pendent on signal amplitude as was the fixed-point processor.

Upper bounds on the error variance are shown in Fig. 5.3 as a
function of MTM with MEM = 10. The lower bound values were either zero
or very small numbers. The variance bounds are dependent on the signal
amplitude, but independent of the MTM values between 11 ant, 15.

The integrator word length effects are demonstrated in Figures 5.4
and 5.5 for MTM = 13. First the 0.125 volt signal amplitude is used
and then 0.413 volts. The variance bounds are almost indepcndent of
MEM, but the average error bounds are strongly dependent on MEM for
values less than 10. The best values of MEM for the upper bounds are
MEM = 8 for 0.125 volts and MEM = 9 for 0.413 volts. The best values of
MEM for the lower bounds are any MEM > 12. Fig. 5.6 is an expanded ver-
sion of the variance upper bound versus MEM with MTM as a parameter
family. Note that the smaller the amplitude becomes then the less de-
pendency on MTM, e.g., for 0.413 changes are not noticed for MTM > 12,
ror 0.125 volts changes are not noticed for MTM > 10, while for 0.025
volts the results do not change for MTM > 9. The reduction in the
variance bounds for low MEM values was 1.ot expected. Even though the
reduction of MEM would appear to produce more variations, thl bound has
a canceling effect by reducing the dependence of the residue variance or2.
This effect is not anticipated for the simulation results.

The variance bounds are presented as a function of signal amplitude
with MTM = 13 in Fig. 5.7. There is not a strong dependence on MEM and
the lower bound is zero for values not shown.

The results of this section are compared to the floating-point
simulation results in Chapter 6.

A follow-on analysis using a two-sector approximation RMS error of
0.1265% was made. The results of Fig. 5.7 revealed a maximum decrease by
a factor of 2 at 0.413 volts and insignificant changes for amplitude less
than 0.1 volts.
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CHAPTER 6

FLOATING-POINT SIMULATION PROGRAM
by Bhadrayu J. Trivedi and Brian P. Holt

A FORTRAN program was developed to perform the simulation study of
the floating-point processor. A description of the program follows in
Section 6.1 and some typical simulation results are discussed in Section
6.2.
6.1 DESCRIPTION OF PROGRAM

The floating-point simulat-on program was patterned after the struc-
ture of the fixed-point simulation program. The suggested improvements
of Section 3.1.3 were incorporated in this program. The technique for
representing the floating-point binary numbers and simulating the arith-
metical operations was markedly different from the fixed-point case.
However, it did follow the principle of representing all binary numbers
as positive decimal integers. The programming technique is described in
Section 6.1.1. The routines to simulate the basic arithmetic operations,
other system blocks and functions, and the overall program are described
with detailed flow charts in Section 6.1.2. The floating-point simula-
tion program is listed in Appendix F with the details of data card for-
mats.

6.1.1 Programming Techniques

In the -loati.ig-point processor discussed in Chapter 4, numbers are
represented as

NUMBER = M • 2C (6.1)

where M is the mantissa in two's complement binary with sign and C is the
characteristic (often called exponent) in signed magn4tude form. For the
purpose of Fortran simulation the mantissa was represented in the manner
identical to the fractional rumbers in the fixed-point processor. This
technique was described in detail in Section 3.1.1. The characteristic
is always an integer and is therefore converted to its decimal equivalent
with a sign for the purpose of simulation.

This approach, for the Fortran representation of the mantissa and
exponent, permitted the use of some of the fixed-point simulation routines;
viz., ADD for addition, MUL for multiplication, ITREX for truncation of
the mantissa, and MAGNF for firding the magnitude of the mantissa. It is
necessary to align two numbers to be added so that they have the same ex-
ponents. Also, it is necessary to normalize the result of an addition,
multiplication or truncation operation (as discussed in Section 4.1).
Two routines ALIGN and JUSTFY were written for this purpose and are de-
scribed in the next section. It was also necessary to modify ADD slightly
for the reasons discussed in the next section.
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6.1.2 Flow Chart of P-ogram

In this section the MAIN program is described first. Next, the
routines ADD, JUSTFY and ALIGN are described. These routines are used
with fun-tion subprograms MUL, MAGNF and ITREX to form the group of
routines which simulate basic arithmetic operations. The latter three
are described in Section 3.1.2 and are not discussed here. The routines
FLCOEF, IAD and SACGEN perform the functions of coefficient quantization,
input sample ouantization and signal-clutter combination respectively.
IAD was described in Section 3.1.2 and so was SACGEN but with a different
name PULSEQ. FLCOEF was prepared to quantize the MTI filter coefficients
into floating-point numbers. Its counterpart for the fixed-point program
was COEF. After FLCOEF the routines FLOFLT and RMSHAL are described.
These simulate the hardware MTI digital filter and the PMS unit (also
referred to as the vector-magnitude unit) for the floating-point processor.

The overall program simulates the floating-point processor discussed
in detail in Section 4.3. Like the fixed-point simulation program it
generates results that can be used in a statistical study of quantization
errors. The MAIN program flow charted in Fig. 6.1, starts the simulation
by reading in signal, clutter, radar and filter parameters which it sub-
sequently prints out. It then reads in the mantissa and characteristic
bit-lengths to be maintained at different points in the processor. Next,
a set of parameters are read which control several different functions,
viz., an option for implementing the hardware RMS approximation algorithm,
an option to include clutter in simulation or not, an indicator to print
out the integrator output statistics after a fixed number of dwells,
start and stop indicators to obtain detailed debugged simulation print-
outs for all dwells between the specified limits, and an option which
controls whether the theoretical output is to be computed with a quantized
or unquantized set of filter coefficients. All the parameters read in by
the MAIN program are explained in Appendix F with the details of how they
are specified on input cards. Then, the clutter filter impulse response
is modelled, and scale factors for clutter and signal combination are
generated and printed (if clutter is to be used in the simulation). The
MAIN program simulates one system block, viz., the post-residue integrator.
All the other system blocks are delegated to routines which MAIN calls.
It calculates the output statistics for the ;.ardware RMS unit and a
hypothetical perfect RMS unit at the end of each residue. The statistics
involve computation of the maximum, the minimum, the mean and the vari-
ance of the error in the residue output. The error is defined as the
actual output minus the theoretical outfit (see Equations 5.1, 5.5, 5.7).
The statistics for the difference between the hardware and perfect RMS
outputs are also computed. A similar statistical analysis is carried out
on the integrator outputs, i.e., at the end of each antenna dwell. The
nature of the statistics is biased as defined in Equation (3.4). Note
that the simulation results presented in Section 6.2 pertain to the inte-
grator output statistics. The MAIN program calls RANDU for picking uni-
formly distributed random phase starting angles for the doppler signal
and calls RANDM for generating a set of Gaus~ian random numbers to be
used for simulating clutter. The program also monitors and indicates the
total number of A/D converter saturations in a simulation run. The dis-
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cussion here and the flow chart of Fig. 6.1 present the important features
and a brief outline of MAIN since it is a very large sized program. But,
when used with the detailed comments of the listing (in Appendix F), the
working of MAIN can be easily traced.

The flow chart for subroutine JUSTFY is shown in Fiq. 6.2. JUSTFY
accepts the mantissa and the exponent of wn unjustified or unnormalized
number with M < 0.5 and gives back the martissa and the exponent of the
resulting justified number. The mantissa i. shifted left until a 1 ap-
pears in the most significant bit position ,if a positive number or a 0
appears in the most significant bit positioi of a negative number. The
exponent is reduced by the number of shifts the mantissa undergoes. If
the unjustified number is zero then its exponent is sit to the most
negative value,EMIN,specified to the routine. Note that JJSTFY does not
normalize a number which has overflowed into the integer portion of the
mantissa as a result of an addition. Such a number is normalized by
correcting for overflow by the program that calls ADD. This involves
dividing the mantissa by 2 and inpremc.niing the exponent by 1.

The subroutine ALIGN accepts the mantissas and the exponents of two
justified numbers, determines the number with smaller exponent, increments
its exponent and divides its mantissa by 2 u,til the two exponents are
equal. The algorithm is illustratid in Fig. 6.3.

The modified subroutine ADD as flow charted in Fig. 6.4 accepts the
mantissas of two aligned numbers. The modification implies that the
carry of the result is inserted back into the number if an overflow oc-
curred so that the program which called ADD can correct for it Und nor-
malize the result. Except for this modification the routine is exactly
the same as used for the fixed-point simulation.

The subroutine FLCOEF quantizes filter coefficients in either fixed-
point (exporent value set to zero) or floating-point representations by
using the concept of quantization interval defined in Section 3.1.1. The
floating-point representation requires that the quantization interval be
modified depending upon the magnitude of the coefficient and the number
of bits available for the exponent. Once the quantization interval and
the exponent are determined tne mantissa is quantized just like in the
fixed-point simulation routine COEF. However, if an overflow occurs in
the rounding of the mantissa then it is corrected unlike in COEF. Finally,
as shown in the flow chart in Fig. 6.5, FLCOEF calls JUSTFY to normalize
the number.

For the floating-point processor, the fixed-window non-recursive MTI
digital filter is simulated by the subroutine FLOFLT. It is used for
both the in-phase and quadrature channel filtering. Its flow chart ap-
pears in Fig. 6.6. It calls IAD to quantize the signal sample obtained
from SACbEN. The signal sample is represented as a two's complement
fixed-point number. Next, FLOFLT uses MUL to multiply the quantized
signal sample by the respective quantized coefficient mantissa. This is
followed by the normalization of the product by JUSTFY. Next, the
product mantissa is truncated by using ITREX and is again normalized by
calling JUSTFY. Then subroutine ALIGN is called to align the product and
the accumulator sum for addition. They are added with a call to ADD and
then corrected il a mantissa overflow occurred or normalized by a call to
JUSTFY. Finally, after NDELAY (total number of coefficients) additions,
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the magnitude of the accumulator mantiss' is determined by using MAGNF.
Thus, the computations uf FLOFLT use all the subprograms which simulate
different ari th,,icti c operations.

The subroutine RMSHAL implements the hardware algorithm for the RMS
unit and its flow chart is shown in Fig. 6.7. The algorithm is outlined
in Equation 2.2. As can be seen from the flow chart the parameter IDIV
provides two options for the manipulation of the mantissas and exponents
of S and L before they are finally added to implement Equation 2.2. If
IDIV = 1, none of the exponents are disturbed and all the manipulations
are carried out on the mantissas. If IDIV=O, then wherever possible the
mantissa is divided by multiples of 2 and the exponents adjusted accord-
ingly. The hardwdre implications of these are discussed in Section 4.3.
At the time of constructing the simulation package it was deemed worth-
while to investigate the two options. But, from the hardware point of
view it is easier to implement the IDIV = 1 option. All of the simulation
results discussed in the next section were with IDIV -- 0 but it did not
have any effect on the quantization errors since the mantissa bit-length
used for the RMS unit was sufficiently large.

In addition to the floating-point DSP word lengths defined in Table
5-1, three more word lengths were defined for the purpose of simulation.
They appear below as Table 6-1.

TABLE 6-1 ADDITIONAL FLOATING POINT DSP WORD LENGTHS

MFT ---- Truncated filter output mantissa bit-length. Magnitude with
MFT fractional bits. No sign bit is used.

MRM ---- RMS unit input mantissa bit-length. Magnitude with MRM
fractional bits. No sign bit is used.

MRE --- RMS unit input exponent bit-length. Signed magnitude form with
1 sign bit and MRE - 1 integer bits.

Also note

I) For simulation all the exponents were represented in signed
magnitude form instead of the two's complement form indicated
in Tab), 5-1.

2) MX, MEM, MSM, MSE in Table 5-I correspond to MXM, MRT, MIM,
MIE respectively in the simulation program.

3) It was not necessary in the sitiulations to define new names
for the exponent bit-lengths corresponding to MFT and MRT,
i.e., MFE and MRE were used.

6.2 TYPICAL RESULTS

Simulation results were obtained for the set of 9 filter coefficients
listed in Table 3-2. All the simulation results pertain to integrator
outputs using the hardware RMS algorithm.
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The effect of the truncated product mantissa bit-length MTM and the
integrator mantissa bit-length MIM on the average value and variance of
the error at the integrator output is presented first. Then, the effect
of varying signal amplitude on the same output parameters is shown. For
all simulation results MXM = MCM = 9 and MCE = 0 were maintained, making
these parameters the same as for the fixed-point processor simulation.
The value of MFM was maintained the same as MTM, MFT = MFM - 1, MIR1 = 20
and MRT was kept the same as MIM. The values for the exponent bit-lengths
were chosen as MTE = 4 and MFE = MRE = MIE = 6 to avoid possible exponent
underflows and overflows.

The average error as a function of the truncated product bit-length
MTM is shown in Fig. 6.8. Here the integrator bit-length MIM is chosen
as the family parameter and the results are plotted for three different
signal amplitudes. For the signal amplitude of 0.025V the dependence on
MTM is very strong for 9 < MTM 11. However, for values of MTM > 11
there is much less dependence. For the signal amplitudes of 0.125V and
0.413V it is seen that the results are not strongly dependent on MTM.
For all three cases It is seen that as the value of MIM decreases the
magnitude of the average error increases. This effect is most prominent
for the 0.025V case. Comparing this with the corresponding theoretical
results shown in Fig. 5.2 it is seen that the lower bound for the 0.025
case is at least an order of magnitude lower than the simulation results.
For 0.125V of signal amplitude the lower bound is smaller than the simu-
lation results by approximately a factor of 2. However, for the 0.413V
case the lower bound seems to be an order of magnitude larger than the
simulation results. It is important to note that an exact equivalence
does not exist between the two figures because MEM - 10 corresponds to
MIM - 10 which lies in between MIM a 9 and MIM - 11 curves, All the
upper bound values are positive and hence above the simulation results
which are all negative.

The effect on the variance of the same parameters mentioned above
is shown in Fig. 6.9. Neither MTM nor MIM strongly affects the variance.
As expected the variance increases with signal amplitude just like the
average error. This is the only significant generalization that can be
made about the variance behavior. The theoretical upper bounds for the
corresponding cases are seen in Fig, 5.3, and it is seen that for all
signal emplitudes they are about an order of magnitude higher than the
simulation results. The lower bounds are almost zero and hence are be-
low the simulation results.

The average error as a function of MIM with MTM a: a family para-
meter Is shown In Fig. 6.10 for three different signal amplitudes. In
this presentation the offect of MIM Is more strongly brought out. But,
the effect of MTM is not strongly discernible except in the case of the
signal amplitude of 0.025V. The average error increases with increasing
signal amplitude, An exAct comparison can be made with the theoretical
boinds for the casos of 0,125V and 0.413V by using Fig, 5.4 and Fig. 5.5
respectively, for MTM - 13. For 0.125V the average error lower bound is
smaller than the simulation results by at least a factor of 4. The upper
bound falls below the simulation curve for MIM - 7 but for larger values
of MIM always stays positive In contrast to the negative simulation
values., For 0,413V the lower bond is smaller than the simulation results
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at least by a factor of 3 and the upper bound is greater than the simula-
tion value by a factor of 4 for MIM = 7. For larger values of MIM the
upper bound is larger by a factor of 2.

Variance behavior for the same case mentioned above is shown in
Fig. 6.11. Again no strong dependences on either MIM or MTM are observed.
As the signal amplitude increases, the variance also increases. A com-
parison with the theoretical upper bounds is obtained by looking at Fig.
5.6. For each signal amplitude the upper bound is about two orders of
magnitude larger. The variance lower bound is almost zero and hence be-
low all thz simulation results.

In Fig. 6.12 the effect of signal amplitude on average error is seen
for MTM = MIM = 13. The magnitude of the average error shows several
peaks and valleys with several positive-negative transitions, unlike the
fixed-point processor simulation results. The excursions due to clutter
are spread out at valleys but are cluttered together at peaks. The effect
on variance is seen in Fig. 6.13. It is less erratic than the average
error and shows an average positive slope for the curve. The excursions
due to different clutter cases are closely grouped together. The
theoretical upper bound curve as seen from Fig. 5.7 is an order of mag-
nitude above the simulation results. The lower bound is almost zero and
hence below all simulation results.
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5 0 + 3.0 dB

A 0.0 dB

0 -3.0 dB
2 -10.0 dB

-20.0 dB-
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I A

2-

10-4

5

0.02 0.05 0.] 0.2 0.4 0 6 0.8
Signal Amplitude (Volts)

Fig. 6.12 Average Error as Function of Signal Amplitude (9-Tap Floating-
Point Simulation Results, Doopler Frequency = 1500 Hz, MTM = MIM 13)
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5 Legend: Signal-Clutter Ratio
0 + 3.0 dB

A 0.0 dB

2 -E -3.0dB

S-10.0 dB

i0.3 _D -20.0 dB

* A/D Saturations with
SCRDB, No. of Saturations
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2

2 0

-20.0 dB, 22500

5
No Clutter

2

10-6
0.02 0.05 0.1 0.2 0.4 0.6 0.8

Signal Amplitude (Volts)
Fig. 6.13 Variance as Function of Signal Amplitude (9-Tap Floating-Point
Simulation Results, Doppler Frequency = 1500 Hz, MTM = MIM = 13)
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APPENDIX A

DETAILS OF FIXED-POINT ANALYSIS
by Jerry D. Moore

The analysis of the fixed-point DSP described in Chapter 2 is sup-
plemented by this appendix. Equations presented in Chapter 2 are not
repeated, but the detailed mathematical steps leading to the summary
equations are given.

A.l FILTER OUTPUT

Signal flow graphs are used to determine the output of the fixed-
window MTI digital filter used in the DSP. Fig. A.l depicts the MTI
filter. The input is the sum of an errorless signal x() and the A/D
converter quantization error e(). Traditional symbolz are used, i.e.,
z-1 represents a one sample period delay, ho represents coefficient
values, arrows represents multiplication, unlabeled arrows have unity
factors associated with them, and small circles represent summation
nodes. The eo(n), ... , eNl(n-N+l) terms are the error associated with
truncation of the product Cx()+eo] ho. A moving-window MTI, or an FIR
digital filter, would produce an output value for each input value. The
fixed-window realization is used because of simpler hardware require-
ments, i.e., the delay/multiplication process of Fig. A.l can be realized
by time multiplexing one multiplier and one storage location. It is the
fixed-window approach that dictates that the sampler be present at the
output. Sample values are taken from the output every N input samples.

The product truncation error terms can be collected and added to
the final filter output as shown in Fig. A.2. Superposition is then ap-
plied to the input sequence and the structure shown in Fig. A.3 is ob-
tained. The lower portion of this figure (where e(n) is the input and
the product truncation terms are added) represents the total quantization
error go as given by Equation (2.5).

A.2 AVERAGE ERROR AND VARIANCE OF INTEGRATOR OUTPUT

The development in Chapter 2 following (2.5) through (2.12) is com-
plete. The average value of the integrator error is obtained as follows,

M

INTET() = z b(mNT - Mu
m=l

= M[b - u]

M[r + et - u] (A.1)
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where it has been assumed that the average value of b(mN) does not de-
pend on m. This is a logical choice for the signal environment encoun-
tered in radar systems, i.e., sinusoidal doppler signal with additive
random noise and clutter. It is possible to show cases where the as-
sumption is not valid, e.g., a constant level input, but this is not a
practical radar signal.

An expression for the variance is obtained by

G2 = INTEP(M) - INTE(M) (A.2)OINTE

The mean squared value follows from

INTE2(M'1 = E b(mni) - M u
m=l

E b(mN)b(kN) - 2 M u E E(mN)

mk m

+ M2u2 . (A.3)

Using (A.l), squaring and subtracting from (A.3),

INTE(M) = b(mN)b(kN) - 2 M u E F(mN)
mk m

+ M2U

G2 = F, [b(mN)b(kN) - b(mN)b(kN)] (A.4)°INTE m k
l mk

The bracketed term will equal zero for m I k when statistical independence
is assumed, thus

T 2 [b-(mN) - 2 (mN)] (A.5)INTE

Results given by (2.8) are used for b() and

175



W7mNT = Cr(mN) + et(mN)]

= r7+ 2 e---t + t

= F + T + 2F e t  (A.6)

where r and et are statistically independent. Similarly,

r 2+ 2 T it + e.t2 (A.7)

Subtracting (A.7) from (A.6) and substituting into (A.5) gives

02 '4 Z [(-r7T 2) + (=e -jt2)] (.8
INTE (A.8)

from which (2.14) is obtained, i.e.,

=INTE M[ar2 + at2] . (A.9)

A.3 BOUNDING OF RMS UNIT OUTPUT

Equation (2.7) gives the expression for the residue, i.e., the RMS
Unit output. Because of the nonlinear relationship, it is necessary to
bound this expression prior to determining the average value and vari-
ance. Considering the square-root portion and replacing w() by (2.3)
gives,

/WlZ + WQz = /(Yl + gl)Z + (YQ + gQ) , (A.lO)

This can be viewed as the magnitude of a resultant vector which is formed
by summing two vectors U and V, where

U = (YI, YQ)

JUI = u = y + yQ

V (g1, gQ)

Il = v = glZ + gQz , (A.l1)

The magnitude of the sum of two vectors is less than the sum of the mag-
nitude of these ve:tors. Also, the magnitude of the sum of two
vectors is greater than the magnitude of the difference of the mag-
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nitudes of these vectors. Stated in equation form this gives
(2.15).

A.4 CONCAVE/CONVEX THEOREM

A general form of this theorem is given [cf., pp. 563-567 of [13])
and then applied to the analysis problem of Chapter 2.

Theorem: The expected value of a concave or convex function, f(,
of a random variable, x, can be bounded as follows

<__ f(x) when f"(x) < 0 ; CONVEX (A.12)

TT> f(ix) when f"(x) > 0 : CONCAVE. (A.13)

Proof: Expand f(x) in a Taylor's series about the point x,

co(x 

xkkf(x) = E x- ) fk(_) (A.14)
k=O k!

Expr-ess this as a sum of the first two terms and a remainder term,

f(x) = f(x) + (x - x) f'(x) + R

R = (x f,(x

x< xI < x for x < x

x < xI < x for x > x • (A.15)

If f"() is less than zero, i.e., the function is convex, then the re-
mainder term is negative and

f(x) < f(x) + (x - x) f'(-),

T _T<T7 + (x - 7) f 1(77

f(x) < f(x) : CONVEX . (A.16)

For f"() positive, the function is concave and

TIRT > f(x) CONCAVE, Q.E.D. (A.17)

The first application of the theorem is in (2.17), where iu - vi is
a function of the random variable v and is obviously concave. Thus,
from (A.17)
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lu v > lu - V1. (A.18)

The next application of the theorem is in (2.18). The lower bound
is obtained by treating v as a function of g, and then gQ.

g2

v11_0. 2- 2 (A.19)

The use of g, and then gQ is justified because of the statistical in-

dependence and

V f/gi + gQ p(gI, gQ) dgldgQ

[91 + gQ p(gI)dqI]I p(gQ)dgQ .(A.201)

This gives from the concave theorem,

V > i FJ +gq-n 2 '/2 =z IT I(A.21)

However, if v is treated as a function of gl2 and then gQ2 then

vo v" d2 V I v- 3/2 <0(.2

d(gi2)

This is convex and thus

A.5 AVERAGE ERROR BOUND

The upper bound expression of (2.19) follows immediately by substi-
tuting (2.18) into the upper bound portion of (2.17) and the results
used in (2.13). The lower bound expression of (2.20) involves another
simple manipulation, viz.,

u - VI = /(u- = Vuz - 2u + 7. (A.24)

The smallest value of this expression is obtained by

lu - 71min = Vuz - 2u Vma x + -Z min  (A.25)
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Using (2.18) yields

iu- vI mini U2u 2I + 2§2 .(A.26)

Equation (2.20) follows from (A.26).

A.6 ERROR VARIANCE BOUNDS

The upper bound on Or' is a consequence of using the maximum mean-

square value and the minimum mean value squared, i.e.,

CT2  F F.. 2 .r - max mi n

(1 +y ) (U2 + u + )

w 1+~ u + 2u /2F + 2F) (A 27)

rmin2  (1+ y )2 (U j )2 01

2 <~ (1 + 27Y + 7)(u2 + 2u 7i + )
r -w w

-(I + 27 +7Y2)(U2 - 2u V+ V2)

w w w

+ = 7 -2 V 2+ (2 +47 +7 + 2) 2u V (A.28)
Yw V Yw w +Yw +Yw

Collecting terms yields,

2 2 +( 7 2U72+4 + T7 + 7 2)

0r- < YY U I+2w v + 2+4w w w

+77TY27 v (A.29)w w

The lower bound results from using the minimum mean-square value and
the maximum mean value squared, i.e.,
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r-min r 'max

r > 0, if above result is < 0.

> i >> (+w (u 2 - 2uv+W

= (1 + yw)L (U2 - 2u /27+ 2g)

- Max = (I + yw7)2 (u + 2u v+ v 2)

2 >(I + 27y + y72) (U2 - 2u 7+ T)
r w w

- (1 + 27w + 7w2 )(u2 + 2u 7 + V2) -w w

=(7 -2 7) u 2 + (1 + 2- )(T2 ~2 + T- --7 72 V2)
w w Yw WV w

- (2 + 4y- + 77 + -72) - 2u 7 u (A.30)

Collecting terms yields

r2 > a 2 U2 + (1 + 27) a 2 - 2u 7(2 + 47w + j7 + 72)
rw w w

+ 7-- W - Y 2V2 (A.31)
w w

The results of (A.29) and (A.30) depend on av2 which cannot be determined
exactly. It can be bounded as

a v2 V v_ 2

a 2 g" -72

SV2 < 2F - 2F = 2 a 2, from (A.21),

v2 > 2F - 2F = 0, from (A.23). (A.32)

Thus

r2 < a2 u2 + 2(1 + 2Y-w) ag2 + 2(77 + -Yw1 + 47yw + 2) 2 . u

+ 2 yw2 F 2 Yw2 g 2 (A.33)
w1w
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and

2 > 2 u2 -2 + 72 + 4y + 2) /Fu
Y w w w

+ 2F C 2 (A. 34)

The results of (A.33) and (A.34) are (2.22) and (2.23) in Chapter 2.
The output error variance is bounded as per (2.24) and (2.25) in Chapter
2.

A.7 TRUNCATION STATISTICS

The presentation by Oppenheim and Schafer [3] on pages 409-413 forms
the basis for the truncation statistics used in (2.26)-(2.28) and (2.30)-
(2.32). A two's complement arithmetic system is used, i.e., positive
numbers have a 0 sign bit and magnitude bits, while negative numbers are
represented in two's complement form. Letting x represent the fractional
number with nb bits, (the b subscript is a mnemonic for before and will
become obvious later in the presentation), then

nb

Ixl = n an 2 -. (A.35)
n=ln

The representation of a number is

x = 0 • ala 2 ... anb, x >0

x = I , bIb 2 ... bn x < 0 , (A.36)

b

where the bn terms are determined for negative numbers by

x = 1 -jx[, (A.37)

It can be shown [3] that when such numbers are truncated to contain
n bits, (where the a subscript is a mnemonic for after truncation),
tIen the error etr is

- ( 2 b - a < etr < 0. (A.38)

Assuming that the error ib uniformly distributed over this range yields

etr nb 2 (A.39)
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and

t = (2 b - 2fna)2 (A.40)°tr " 12

The error statistics for rounding numbers is similar to these results
except that eround 0 0. The variance expression is the name as in (A.40)
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APPENDIX B

COMPUTER PROGRAM FOR FIXED-POINT THEORETICAL ANALYSIS
by Jerry D. Moore

The computer program for implementing the theoretical analysis of
the fixed-point DSP is presented. The flo,, chart is given in Fig. B.1
and the program listing in Fig. B.2. The program requires data cards
to specify the number of filter coefficients, the number of residues to
be calculated, the input signal amplitude and frequency, the radar pulse
repetition rate, and the filter coefficient values. The format struc-
ture is shown in Table B-1.

TABLE B-1

DATA CARD I CONTENT COMMENTS CARD FORMAT

1 NM N=Number of filter Co- 212
effi ci ents

M=Number of Residues

SIGAMP, SIGAMP=Signal Amplitude 3F15.4
FREQ,FPRF FREQ=Signal Frequency

FPRF=Pulse Repetition
Rate

2,3,... H(1),I=I,N Coefficient values 4F15.8 per
card
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READ
PARAMETER
VALUES

INITIALIZE
VALUES

( CALCULATE
TRANSFERFUNCTION

CALCULATE I
IDEALIZED
RESIDUE

[ PROCESSOR
WORD LENGTHS

SPECI FILED

STATISTICALI
BOUNDS

CALCULATED

T

Fig. B.1 Flo' Chart for Fixed-Point Processor
Theoretical Calculation of Statistical Bounds
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C TIOS --- THEORLTICAL INTEGRATOR OUTPUT STATISTICS
C
C DEVELOPED Oh CO(41RACT DA60072 FOR US ARMY RESEARCH OFFICE

CC 0Y JERRY D, MOOt E AT 
UNIVERSITY OF ALABAMA 

MARCH 1976

C UEltRMINES INTEGRATOR OUTPUT AVERAGE VALUE AND VARIANCE
C btOUhbS FOR FIXED POINT RADAR DIGITAL SIGNAL PROCESSOR
C
C bYMHOL3 USED
C SIAMP SIG:4AL AhLPLITU0E AT INPUT
C U SIG(,AL Ah1FLITUDE AT RMS OUTPUT
C FRNQ SIGNAL FREQUENCY
C FPRF PULSE RATE FkEOLENCY
C N NUML3ER CF FILTER COEFICIENTS
C ho FILTER COEFF ICIENITS
C I NUMrI[. R OF RES IDUES
C I'X A/D wOki LEiNOTH
C MC COEF. VOkf) LL JGTH
C ,AT (RUrJCATL1) PRODUCT .ENGTH
C 1.1F RANGE 31N ACCUMULATOR LENGTH
C I",L TIRUCATi D NO', L[l,,IH
C NIAXG MAX I"UM ; ,AGI TUDE OF ERROR AT FILTER OUTPUT
C DUE TO tX A145 fMT
C AVOG AVEt AGE EkROF AT FILTER OUTPUT JDUE TO MX AND MT
C AVC(G2 AVEkAGE S(AJAIPE ERROR AT FILTER OUTPUT DUE TO
C MX AD ,T
C S(OAG2 SQUAR.E kOOT (,F TIE AVERAF SQUARED VALUE OF
C THE FRRUl, AT FILTEk OUTPUT DUE TO MAX AND MT
C VAIG VARIANCL AT FILTER OUTPUT DUE TO MX AND MT
C LT 1IN MINIIUM TR ,J,('ATIO1I ERROR INTRODUCED AT [IE
C AVuET AVERAGE TRUICATION ERROP INTIRODUCFD AT ME
C VAkET VARIANCE OF LRROR INTRODUCED AT ME
C LRULLS EHRUHLE2S OUTPUf (PERFECT)
C AVOIW AVERAGE IJiTL6RATOR OUTPUT UPPER ROUND
C AVOER AVERAGE ERROk AT INTEGRATOR OUTPUT UPPER bOUND
C VAkIO VARIANCL OF INIEGRATOR OUTPUT IPPER BOUIJ)
C VAkIIOL VARIANCL OF INTEGRATOR OUTPUT LOWER ,6OUhD
C AVGF*NL AVERAGE ERROR AT INTEGRATOR OUTPUT
C LOWLP (3OUIJL)
C LtdIIl Mli'UNf I'JTLkRATOR OUTPUT ERROR
C LK ,IA MAXI1MUM IrITLRATOR OUTPUT EROR

kEAL MAXG
{IlIIE11SIOl', H(,-1I)

C EAD I 4 THE FIXED PARA.'ETLRS
)0 40 :ARR:I,+
kEAU(5,19) M, ',IOA,..]IPFPEOFPRF,(li(I),l:lN)
l'I iIT i~r
PRHNT 20P 14,SIC)AtFP FI EOFtIqiF,(W(K) vK-Ip" )

Fig. B.2 Fixed-Point Processor Theoretical Analysis Program
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C ""U14 SOMOF rAA(riITUDE5 OF COEFFICIENTS

C 1'JUUM, ,II F SO'JARLS OF COEFFICWFNTcS

1)0 10 I11N

10 HS~,UM=HiS0SLf.*+H ( I ) *f ( I)
C INITIALILATIM4 ENDS
C CALCULATE TRANS-FER FUNCTION AT SIGNAL FREQUENCY

XREALS =0

AP(.,=PI2* (FRLO/FilkF)
DO0 I1 I~lvN

XIMAG=-i( I)*.sIM(ARG*(T-1)
XRE AL S A RIAL S *X rEAL

11 XIMAGS=XIAAG%+XIIAAG
$UIMS(U:AREALS**24 XIriA6S7**2
IRArjS=SQRT (SUMSG)

C THANbf-1R FUNCTION CALCUILATIO1N ENDS
C CALCULATE Up TME SIGNAL ArAPLITUDE AT RMS OOTPUr

L CALCULATION OF U COfAPLFTL
C CHLAFt LOOPS FOR AORD LENGTH4 VARIpTIONS

UO 14 r4X:9p9

rIDUM=Mx+NIC-1
L) 13 MT=6p :iDLtrA
1,FI'T+ALOC,uC)/ALO(,10(?.)
DO0 13 f476p-MF

C ENU OF W(, I LUJIGTi SPLCIFICATIONS
C STATISTICAL B3OUNDS CALCULATIONS

A V G& -N.DUN I
VAR.GN*(DUM**2)/3.+((2.**(-2*MX))/3)ISOSUii
AVbOG2=VARG+ (AVGG) **2
rK AXG=N* (DUMI*2. ) +(2. ..- 11X)*.iriSurt,
SQRAG2=SQRT CAVG02)

VARET(AVGET**?) /3.
AVG0='M*(1.0fJ69*U+1 .42397*OPAG2+AVGF.T)
EN OL[S = N sU
AVULR=AVGIO-EROLES

Fig. B.2 (Continued)
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vAklO.tA(2,276*VARdO.O1595*U**2+578031*U*SQHAG2
1+tJ.0O.,*AVGG-9b22*(10.$*-b)*(AVGG**2)+VAIRET)
L-TM[A=VGET*2,
1A'iA2U* *2+2, *AV uG**2-2 - i2843*U*SQRAG2
IF WUUM2.LT.0) LUM2=n~
AV(,RLMf* (1, OO69sSQiT (DIJ12 ) +AVGET-U)
VARIOL:t.*(0.01595*(U**2+2..AVGG2)-5,7803.U*SORAG2
l+VARET)
IF (VARlOL.Lb*O) VAFRIQL=O

Li 4AXivl(0 ,017 4 *1. +l, '38 1.~ -XG
IF (U.LE. 1.14110i !AXv,) Go TO 30
t.kMItlJ4* (-0 *021t)*tJ-1,*38367*MAXG4FTMIN1)

(a0 To 31
.3U LRf4Ir4N1v* (ETMA1N-U)
.51 C ONr IUE

C END OF CALCULiTIONS
1.5 PRlilwT 2?,rIXp,;Cv, TMFMLEPIOLE-SAVGIOAVGFPVAfdOp

1AVGLERL # VAiRIOL vEkflAII# ERMAX
14 C0e1INUE
I t FOlitiAT(lltg-Xe/e/e/?XPROU1[DS ON't INTEGRIAOR OUTPUT',

1' Li<ROi STAIISTIC', --- UAG0072 1(4760#/)

C FOR.1AT(2Xe 15e X, 'C0LFF1CIE~ITS' 15, IX. 'RESIL)UE-S' ,X,

FOR(AAT(2Xp/p38X, '------UPPER<IOff---'
-------------------- LOhER tHOUi ----- 0)

I FORMAT ( 2 X / p2X t#N 'X' I .X'M ' *2Xe 'MT. ,2X. -4F# ,2X, 'ML'2X#
1'fPERFECT OUTPUT',2X,'AVERAGE OUT'.4XPERROR OUT',
14Xp'VAUAJCL OUT't3Xv'LRROR OUTlv4XstVARI'NCL OUT',
15XpE *LIAIN' *9Xe f'~ AAX')

IL14.6#E13*6)
40j CONTINUE

STOP
DID0

Fig. 8.2 (Continued)
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APPENDIX C

DETAILS OF FLOATING-POINT ANALYSIS
by Jerry D. Moore

The analysis of the floating-point DSP described in Chapter 5 is
supplemented by this appendix. Equations presented in Chapter 5 are not
presented, but the detailed mathematical steps leading to the summary
equations are given.

C.l FILTER OUTPUT

Signal flow graphs are used to determine the output of the fixed-
window MTI digital filter used in the DSP. The symbology is similar to
that of Appendix A.

Figure C.1 depicts the floating-point filter with ar, input of
x(n) + e(n). The h(k)(l + 6 N - 1- k) terms are the transmission factors
associated with the filter coefficient multiplication and the truncation
of this product. The 6 term is the multiplicative statistical factor
associated with the truncation. When two of the truncated products are
.dded there is an additional truncation error introduced. This is repre-
sc.,ted by the ; terms dnd is a multiplicative term. Consequently, the
terms (1 d j), j = 1, 2, ... , N-l, represent the transmissions of the
(N-1) summation processes. A shorthand notation Is developed to repre-
sent the chain of transmission multiplications that occur, i.e.,

N-1
ok (I + 6k) ' (1 + ci), k = 1, 2, ... , N-I,

i=k

0o  o •l (C.l)

It is soen that for a given output, w(mN), each input sample that is
being used will be multiplied by a filter coefficient and a e term.
Mathematically this is given by

N-1
w(mN) = E h(n) oN"l-n[x(mN - n) + e(mN - n)]. (C.2)

n=O

Separat'on of the x() and e() terms and manipulating gives

N-1
w(mN) = E h(n) ION-l-n + 1 - 1] x(mN - n)

n=OInO i N-1

+ z h(n) ON-ln e(mN - r) , (C.3)
n=o
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where 0 has been added by the + 1 - 1 operation. Thus

N-1
w(mN) = E h(n) x(mN - n)

n=O

N-i
+ E £h(n)(eN 1  - 1) x(mN - n) + h(n) eNln e(mN - n)].

n=O -n (C.4)

fhis yields the equations of (5.1), (5.2) and (5.3).

C.2 INTEGRATOR OUTPUT

The residues are calculated by the RS Unit and then truncated prior
to being summed in the integrator. Since these are floating point opera-
tions, there is error introduced by the addition operation, i.e., the sum
will be truncated back to the same number of bits used in each input word.
A signal flow graph is shown in Fig. C.2. There is a strong similarity
to the graph of Fig. C.l, but r subscripts have been included for the
multiplicative error para)ieters 6 and ;. This structure assumes that M
residues are used to form an integrator output. The chain of transmis-
sion multiplications is written as

M-1
+r,k = ((+Ik) i ( + , k 1, 2, ... , M-l,r~k r~k)i=k

ar,O er,l " (C.5)

The integrator cltput can be expressed as

M
INl(M) = z r(mN) er

m=l ,m-l

M-1
= er,m + 1 - 1] r[(m + I)N]
M=O ri

M M-1
= E r(mN) + fe r,m - 1] r[(m + l)N]. (C.6)
m=l m=O

This yields the equatit-is of (5.5) and (5.6).

C.3 AVERAGE ERROR AND VARIANCE OF INTEGRATOR OUTPUT

A determination of the average error expression of (5.8) follows
immediately from (5.5) and (5.7) by assuming statistical independence of
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the residue terms.
The yariance of the integrator error will be equal to the variance

of the integrator output, i.e.,

=NTE oNT = r(mN) + eint

"[z7 F + eint (M)] 2

= [ tMN) ' + 2 eint (M') Z r(TN) + )nt (
111 m

2 - 2 2n ( M ) E 2 (M )

m m Tn

E E [ r(mN)r(mT r 2] + e--(M)
mm

+ 2 [ eint(M) E - F z F] . (C.7)
m m

For m # n the term inside the.double summation is equal to zero, thus

0INTE = Mr + r int2 + 2 [ eint(M) E - e F (C.8)
m m

The bracketed terms are now evaluated

eintW77)__ - Z~N E (Or,k I - I) r(kN) r(mN

m k=l m=l

M M
-E E (Tr,k-l - 1) r(kN) r(mN) , (C.9)

k-i m=l

wherE statistical independence between o and r is assumed. Also,

M Meint() = Mr z (-r ,k-I" I )F
eint (M)  I  k=l

M

Mr 2 - 1) , (C.1)
k=l
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From (C.9) when k m then r(kN) r(mNFJ i;, thus (C.9) minus (C.10) can
be wiritten as

(M -1) F2  + 1) Kr 2E rk-
k=l - +k=1 Wki-kl kl-1

M
Zi-2  1k(0 r,k-l1)

M- 1
r 2 r,k - )(C.11)
rk=0

Using (C.11) in (C.8) gives (5.9).
Determining the variance a? follows from (5.6) by finding*Int

'TjntT E E (6k-i - 1)(e riol - 1) r(kN) rm)
k=l m=l

ent(M T Fm= [~ ~ - -E 2 r ' MM Trn - 1)(er,kl-1m~ Tj-Im1 k=l (rni-1

E2  E OrI k-l - 1)(Ori-1 0N i-1int k=l M~lLrml 7 ~N rH1-(rkl 1

.(rMl- 1) F2] 1 (0.12)

For k m the difference is equal to zero, thus

M F1___ _-2 1

En T ~l[ Or -7 F) - (Trm -1) F 2] (C.13)

Changing the index for summation yields the results of (5.10).
The bounding procedure used on the residue caculation is complete

in (5.11) through (5.19). The results depend on the filter outp ut
statistics g and F. These quantities are determined from (5.3), i.e.,

N-1 _ _ _ _ _ _ _ _ _ _

(mN) E h(n) (6 NIn - 1) x(mN - n) + TNl1n e( mN -n)J,(C.14)

where e and e are assumed statistically independent. Since I*0, it
follows that
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_ N-1 _ _ _ _ __ _ _ _ _ _

g h(n) (0 1- 1) AxMN n)
n=O

N-1
E h(n) 1 0 N-l-n AMiD - n) -(C. 15)

n=;:

Assuming that the x() samples come from a doppler signal that has zero
mean, i.e., x =0, and that e is statistically independent from x given
that x is positive or given that x is negative yields

A AN-1 +- 1(.6
E h(n) Te -C.16

n=0 I N-1is N- i-n II

where A is the peak value of the sinusoidal signal x() and half-wave
average values are used for T+i and T-, i.e., x + -xJ- = 2A/7r.

The mean squared value is more complicated, but squaring (5.3) and
taking the expected value gives,

o7h(n) hk N1n- 16 -I- 1) x(mN - n) x(mN_-_kT
n=0 k=0

+ 0N-i-n 0 --kem - n) emN - IT] (C.17)

where _e = 0 has been utilized to obtain this result. For n k statisti-
cal independence can be assumed between the e() terms and also between
the o and x() terms, thus

_9 E Eh(n) h(k) eN1- xmN-n o N-i-k x(mN -k)

n k

+ Zh 2 (n) (0 lz xz(mN - n) + _e e
[0 IN i-n N-i-n

A2 E)(hn)h&+ T
7n k N-i-n N-i-n N-i-k N-i-k
nOk

+ E h2(n) o2 T + -e) - TN1n + -T(C.18)
n=0 -
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The mean squared t a of x is the ms value squared, i.e., T = A2/2,
thus simple maniVrution yields (5.21) when -z = 1/2[9+ 2 + U-21.

C.3 FLOATING-POINT STATISTICS

Evaluation of the statistics of the floating-point parameters ek
and or k is presented in this section. The procedure is identical for
each of these, thus a generalization is made from the Ok derivation.
Using (C.l) and taking the average value gives,

- N-1
0( + 6+) V(1 +

k k i=k I

N-1
-(1 ++ 11 (1 + Z+')

k i=k i

(1 + T+)( + Z+)Nk (C.l9)

where statistical independence and identical distributions are assumed
between index values. The mean value for Tk is similar except the minus
subscripts be used on the 6 and c values. The mean squared value is

2- _ N-I
O+= (I+6+) (I + 4+)T
k k i=k i

= (I + 2T+ + 6+7)(l + 2Z+ + +7)N-. (C.20)

The negative statistic is obtained by using the appropriate sub-
script on 6 and 4. Evaluation of the Or k statistics can be accomplished
by replacing N by M and using 6r and r associated with the integrator
word lengths.

Truncation is proposed for the operations in the DSP. A general
development for describing the resulting error is presented. A floating-
point word containing b fractional bits in the mantissa (after trunca-
tion) and C integer bits in the exponent, (sign bits are not included in
these counts) is used and e is the multiplicative error term. The trun-
cated word, xT is expressed as

xT = x + e x. (C.21)

For positive values of x the error is negative, i.e.,

-2- b . 2
c < x '0, x >0 (C.22)
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The minimum value of x is

i 0.5 2 cx0 (C.23)

Thus

-2"b , x >0

2-2b (C.24)

where a uniform distribution has been assumed 
for F.

Negative values of . are Apressid in two's complement form, 
i.e.

jxj cx-M- ,'

x =(2 M) .2 = M** .2 (C.25)

where M is the mantissa of the magnitude 
of x. Standard floating-point

form dictates that

0.5 < M < 1 (C.26)

Thus

1 M < 1.5

2  < 1 .5 2 2 2cl (C.27)

Truncation of x will cause a negative error, i.e.,

Tx,** **~ (c.28)
XT  Z X + FEX 

(C28

Considering (C.22) gives
•c * 2c

(2 - b)2C  E A** < (2 - 0) • 2

b
(2- 2 "b  <  M <(2 - 0) 0O

(2 -2 b)  e (2 -M) 0

( 2  -2 b) < (2-2 " ) - . (C.29)
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In two's complement multiplication and division by 2. a negative number
is shifted with zeros brought in from the right anid ones from the left.
Thus, to get the 2-' term to appear in the 2-b psition rcquires division

by 2 (bl. It follows that

2-b
52 = 2-b30

Applying the results of (C.24) and (C.30) to the development of the DSP
parameters gives

6+ - - 2 -(MTh-l)

=6 L6 - 2 -2MTM
+ - 3

- ~ = (MFM-1)

16 * 2-2MFM

r34 2-2MEM

C - M M (C.31)

These results can be used to evaluate the e statistics of (C.19) and
(C.20) and consequently the expressions of (C.16) and (C.18) and the
error statistics given in Chapter 5.
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APPENDIX D

COMPUTER PROGRAM FOR FLOATING-POINT THEORETICAL ANALYSIS
by Jerry D. Moore

The computer program for implementing the theoretical analysis of
the floating-point DSP is presented. The flow chart is given in Fig.
D.l and the program listing in Fig. D.2. The program requires data
cards to specify parameters as shown in Table B-i for the fixed-point
processor.
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READ PROCESSOR
PARAMETER WORD LENGTHS
VALUES SPECI FIED

STATISTICAL
INITIALIZE PARAMETERS

CALCULATED

CALCULATE CALCULATETRANSFER AN D -
FUNCTION

CALCULATE CALCULATE

IDFALIZED ERROR
RESI DUE BOUNDS

( STOP

Fig. D.1 Flow Chart for Floatirq-Point Processor
Theoretical Calculat" , of Statistical Bounds
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C TIUosc---HERETICAL INTE(3RATOR OUTPUT STATISTICS
C
C DEVELOPEC) Oil COIJTRACT DAG0072 FOR US ARMY RESEARCH OFFICE
C iiY ULRRY D. MOORE AT THE UNIVERSITY OF ALAHIAA MAY 1976
C
C DETLhMIN ES INTEGRATOR OUTPUT AVERAGE VALUE AND VARIANCE
C HOUHU)S FOR FLOAT ING-POINiT RADAR DIGITAL S;IGNAL PtROCLSSOR
C
C SY~tA'OLS USLfJ
C LIELTAP tUrLTA Foi POSITIVF. VALUES
C ZETAP /-ETA FOR POSTIVL VALUES
C ALL OF THE FOLLOalIhJ- TLNM4S ARE THE AVERAGF VALUEL OF,
C THE TERni INUJICAILD:
C L'ELTAR UFLIA FOI< THlE R VALUE
CL ZLTAR /ETA FOR TME P VALUE
C A e FOLLOWIij6 nt:_ DELTA OR ZETA MEAN!;5 S'4 JARL:J
C 1HLIAP HiLTAj FOR POSITIVE VALUES
C THErAN THETA FOR NEGATIVE VALUES
L THETAR IHETA FOR R VALUES
C L2 Init 1 00,.d,TI ZATISr1 EPROR SOU0AQ[')
C t RtjO LPROk AT OUT PUT UPPEP 00AUf!D
C LRIRLO LI'BO AT cUUTPUT LOWER PIOWJID
C VAREPU VJAPJA1CE AT OUTPUT UF'PFR !1OUi1 t

1L VARLRL VARIAHCE AT OUTPUT LOWER ROUHO
C

D)IMENSION H(20)
(JIMENSION ARTHEI (20)
COniOti/P/ Of LTMi-tZ ?TMAFE TP2 .ZETAP2
COHMON/P/ DLLTA1<vZETARp0 ELTRH vZ[TAR2

C
C PEAu 114 FIXLD PAPAMLIERS

01O 99 NRUNSI e I

P1RINT lks
f:RI14T 2aotn,- SAPFREO,)FPf (P(K),'(:1)
iRI4r 23
PRINJT 21

c mirIIALIZE
iI=I3. 141592b24

C CALCOLAl E TPI'AHSFE R FUNCTIONi AT SIGNAL FREO)F NCY
CPAL S:0

A 1 1,S= 0

DO 11 I=lN

Fig. D.2 Floating-Point Processor Theoretical Analysis Program
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XREALS=XREAL+XRE~ALS
11XIMGS=XImo+xim&!C
SUMSQZXREALS**

2,X !4GS**ZTRAN4S=S(RT (S~lMSCu)
t1zSIGAMP*TRANJS
EROLES=Ni*u

C END OF TRANSFER CALCULATION
c
C CREATE LOOPS FOR~ WO LLNGTI ARIAT7Q~IL'O !4 MbX9,9

00 t3 MTM=9pl5
MFM=MTM
MFi4M1:mFM.l
V)O .13 MfE=MF~.,r,
MSD4=MEM

C LNLO OF WCRL) LLNGTH SOCCLFICATION

C CALCULATL STATISTICAL PARAMETERS
D)ELTAP..2. ** C-MTMj

ZE1AP=;?.* I-MFM)
6CLTiJ2=(1b,

3 )*2 -**(2*MTM)
bELTAR=. . * *-ME")
ZETAR-...,**-'4SM

ZETR2=(4.,3 .)*2.*.-c2*imj4
~E A2**(. 1 3 )*2 **/3M,~
GAM=0 *0069
GAM2=0. OOO256

C LNU OF STATISTICAL PARAMETER ALCULATIONSc
C CALCULATE G

'O 30 w-j;jpf
NNN144-1
NtlJNN I -NNNUUMI=THE TAP I N, Iif 4N) -THE TA N (N v NNM)ARlHET(NN)=UUMj

, 6UM=G0UM H (f IN) 4 t,'IJf~1
GZGL(M. (S IGAN P/V-I,C LNU CALC-ULATION OF 6

c
C CALCULATE 62

GN1=0.

lF(KK.EQ.NN) GO TO 31

Fig. D. 2 (Continued)



GDUMlGCUfM1+F1I J)*H(KK) *A IHETVIN) *AR THE T(KK)
31 CO1NTINUE

G2UUrvl( (SIGAMP**2)/(PI**2))*GDUM1l

NNNNN- 1 -NNN
uu#M2=((S IGAIr**2)/4+E2/2)*(TF TP2(NNNNt)+ THE TN2(WtNNfJN))
LUM3=THE TAP ( Nt~\J +THETAN' (i'J NNNN)

(,I)Or Y = ( )UJM2+ -fDUNIX ) H (NfN ) H W 1i)
GUU13=GDUM 3 +GD(J?-,Y

6a, CONTINUE
Q?2DUM + (D uN 3

C LNL) CALCULATION OF 62
C
C CALCULATE ER~RUP A~ND ERRLG

DUU4=SolT (2,*G2)
1UN1b=U +DUM4
LUMIO=I ..GAM
kfMAX=DUtl1U*)I i6

iR2fAX=0(lM11 *Cfl1Jlt**2
fR2H~ I I IDUM 11 *lIJM7* *2
IRhU~l=U**2-2, ***Lu4+2, **c*2

lF(RDUUM.GT.0.) kH)Lr4j=S0RT0<LUM)
Wi/Ir41=UJM1l0*DUW4
ADUM7A[iS (DUr"7)
40dJM12:ABS(U-SUh T(2.)*A~iS((,))
RN 1r2=U1.11-110 *AMII 11 ( ADUM7 # ADUM12'

uUmb=0.
00 33 ivl,=1 e

33 [UUM iDU5+ThETl,'(f'1erliiM) -1.
ElNIUF)=GAM*Mst+U)Li.1 10* (M*r)Ju'A44 DUM5*DUM6)

C FHJU CALCULATIION OF FtrUUP ANt, ERRLO
C
C CALCULATE VARL~Rh ANb VAIR[RL

\/AIWJP:P'%2MAX -RM]1 1* *2
UA13=R2MIN-RfAAXts*2
VA~kLO=AMAX1 (0)Ul3#O.)
fj~mt=()
U)IJ149=0.
[jO 34 fV=1s,4

Fig. D.2 (Continued)
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bUM8DUMB1+THETR2(MMMM)-2.*THETAR(MMAMM)+l
34 LU1A9=DWJI"9+ ( Tf ETAH (Me 0 IMM) -1 I ) *2

V ARL I U=~RVAXDr>RI N**2) *DUM9
L I UUM=P2I;,4*pur8- (RfMAX**2) *DIJM9
VAHLIL=AMAX1 (EILDUMt,)
VAR ERU= CM+2 **DUHb) *VARRUP+VAREILI
VAtER L=(M+2.*DUM5) .VARRLO+VAREIL.

C LNL) CALCULATION OF VAREHU AN~D VARERL
C

VMRIJL(bL4O) MlX.MTM#,IFM#,MMSMENOLESERRIUPVARERU,
ILRRLO, VARERL

I') CONTINUE
14 CONTINUE
Wd FOliMAT(1i1,2X'.///,Xt'ROUNOIS ON INTEGRATOR OUTPUT',

1.' EktWOR STATISTICS --- FLOATINIG POINT --- DAGU07,d 1976's/)
19 FOkMt AT(2I2312L,/,5(4F2o.13,,))
2(l FORIAT(2XI3,iX,'COLFFICIENJTSS,15,IX,9RESIDUES9,5Xv

19SI(6HAL AMPLITI.IE = #tF8.6t5YflSIGNAL FREQUENCY t
1fi-.*,e5Xt#PRF = ',FI6.2,/,2X,'COEFFICIEtjTS',/t2X,7El5.,i

oc . F01W~AT (2X /,H5X, P'----- UPPER 11OUnD---
1.19)p 1-------- LOWER9 iOUvj[)--9

21 F0kRtvAT(2Xp/p. Xp 'HX' PXt 'ruM' t2X, 'MFM' ,2Xv 'MEM' e2Xu 'MSM'
16XvvPER~FECT OUTPUT',)1Xt'ERROR OUT',,8Xo'VAHIANCL OUT',
i1iX, 'ERRO IOUT' .iX, VARIANCL OUT')

'4u OMT(XiULfl,)
99 CONI M1Uc

S.To ,

ENDC

Fi g. D. 2 (Continued)
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FUNCTIUI; THLTAP(NeK)
COM,'iNN/P/ DL-LTAPtZETAP#DELTP2tZFTAP2

RE TURN
END
FUNCTIO!! THLTP2(Nv~K)
COAs1 ;ON/P/ DELTAPvZETAPPDELTP2sZETAP2
THILTP2=(1.+2.*DLLTAf)+DELTP2)?.(l.+2,*ZETAP+iETAP2)**(t..K)
kFTutmI

EK) I1,TJ.AI!h K

CO~MM511/P DLL.TAfP ZE r :P.DELlP2veZE:TAP2
lrILTANZ=( .- LFLTAF') *( l.-LTAI') ** (N-K)
kE URuak

F-UNC rIUI Tfit:TII?C~vK)
COM1I.K)!/P~/ DL-TAF rZETAP,)FLTFP2if-TAP2
THLr:J42=cl.-2.*['I LTAP40ELTI-Ie)*(l.-?.*ZETIp+ZF-TAP2).**(N-K)

uij.uriu THL1Ak'OrAPK)
CUOtA.iON/ / [hi TAI, Z.TAl'v ,b:L1R2 ,ZFrAR2

LNL)
f 0.4C TI 0i THr.TR2 (Ivl PK )

Fig, D.2 (Continuad)
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APPENDIX E

GCMPUTER PROGRAM FOR SIMULATION OF THE FIXED-POINT PROCESSOR
by Bhadrayu J. Trivedi

This appendix contains the FORTRAN computer program to simulate the
fixed-point processor. In the following discussion the input cards are
described in the sequence actually used by the program.

Input to MAIN

Card-I -- NRUN
Explanation -- Number of simulation runs to be made.
Format -- 12

Inputs to STARTQ

Card-2 -- SCAL, SCRDB, XM2, SIGMAF, CLTFAS
Explanation -- SCAL is a scale factor for normalizing signal plus clutter,

in order to use all the dynamic range of the A/D converter. SCRDB
is the s'qnil-to-clutter power ratio in dB. SCRDB is 0.0 if no
clutter is to be used. XM2 is the ratio of dc to ac clutter power.
SIGMAF is the standard deviation frequency in Hz of the clutter power
spectrum. CLTFAS is the phase of the clutter.

Format-- 5F10.4

Card-3 -- SAM PF
Explanation -- SAMPF is the sampling or pulse repetition frequency in Hz.
Format-- FlO.4

Card-4-- FDOP
Explanation -- Doppler Frequency in Hz.
Format-- FlO.4

Card-5 -- NDWEL, NDELAY, NCYCLE
Explanation -- NDWEL is the number of antenna dwells. NDELAY is the

number of filter coefficients. NCYCLE is the number of residues.
Format-- 313

Card-6 -- (CONST(K), K=l NDELAY)
Explanation -- CONST(K) is the Kth digital filter coefficient. Note

that a maximum of seven coefficients can be specified on a card.
For more coefficients, extra cards should be used.

Format-- 7FI0.6

Card-7 -- MX, MC, MT, MF, ME, MS
Explanation -- These are the processor word lengths in bits as described

in Table 2.1.
Format -- S13

2G3



Card-8 -- (IPRINT(I), I=1,9)
Explanation -- IPRINT(I) is the Ith print option such that:

IPRINT(1) = 0 No print
= 1 Print

where

I = 1 Input to A/D converter
= 2 Output frcn AID converter
= 3 Output fr(m multiplier
= 4 Truncate6 output from multiplier
= 5 Input to accumulator and accumulator output magnitude
= 5 Final filter output magnitude (input to RMS unit)
= 7 Output of RMS unit
= 8 Truncated output of RMS unit
= 9 Integrator output

Format -- 913

Inputs to MAIN

Card-9 -- JPRINT, JADCLU, KTHEOR
Explanation -- JPRINT controls the printing of RMS output statistics.

JPRINT = 0 No print
= 1 Print

JADCLU controls addition of clutter to signal.

JADCLU = U No clutter
= 1 Add clutter

KTHEOR controls the type of filter coefficients to be
used for computing theoretical output (infinite pre-
cision answer)

KTHEOR = 0 Unquantized coefficients
= 1 Quantized coefficients

Format - 311
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PERITFULLY ILGBLE PRODUCTION

c SHnWS TON17~r _Rn FN1-ECQIrFLE

c 4AYQ''ET(VIE '4,'Tr'R1'JA DWEL FrACCIZE LTO'J I fASE ',

* L VL

5 )ft'MIJTPUT F'/X j54'ELL (5. ',JA1sxU

t*1 FIPUUTT~: 11.)

I~ FORMlAT(/X, 'NTI4TERDc A0 CVE,,'FCtA

* 5'OQLSF~TlD 'F2

17 FO T( IX , T( t )VP FLW IN AC1wlAT0' JDA

5~' FORMAT(1U,'ITF~n,'--- N.' TPUT FTATTSTICS N--',I/)X

61 FOWRMAT(/?T'CFN1A DWELLT~,ACUA PYSHAR'n'T

7 F R AT A,'IN- RAI7 AfNNU. "ITT~M CYCLFF!R~C'/,
h CPETCIS,t' /,T2,'Nj CHNF',1"T, CYCLE'T2.EROU

32FORMATWXH1.146.' OF I ATrrPITK1'2ST (STTL =-^-012

* //)UA~~D #F25

I FORMAT (T2 ,'RVTEI) RV!?U~X,T%.Onr5TL 1,O25,T

* i 5 X , / U, T T Z r- D - " 'F " 2' . 5 1)

16 F1FA W , % E6 T 19g.)9)X )T~

Fig 5 Litin for U :The Fixed2oin Simlto Prgrm
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- R,4

QA F'V7MAT(3!11

~? F0Q4AT(1Y,'NA* OF f WELLS'*13.5yt'SJ CIF INTEGkATO)R
*'IITDUTS=', F 1".5 /1X,'tVGo OF IN'Tc(iiATOP AtTPiTSz'#FI'.5)

~7 1Fi"I 1 Y4M(11 TI SILATIM!. Cf TAIIq CLUTTEDO)

*CPTI f LUTTCP")
CALL STAPTf.'

09ri ) JrYIPT,JAtCt.V,WThtI -l
'F -!)p1? rki

'F (lTH fNFV(, 1) PC'1NI l~5

W ITH U~r L V"tFFICIFiNTS#/)

7r "IFo 0'L T (' . -( 'It, ) , "TIFOPETIC AL "-L'Tf'T (mYVP~tTkt '

!FcsA0Lu.'l4.r)) rO To n'

ClO TA 0~77

7rir (4 F T t T i I

tF (vTH~irR.El,") fill TO 21,S!

' tl TM 2 S
40F 1.1ST UV

U,, ) TO '7

Q A f t i'. TI

I Pl'JT'

j) F = 4I LEN Of

Fig. E.1 (Continued)
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fUTMAX:-I1*O

OiITMIN&IOOM*

NS A~
I034 567

00 15 IDWELzI 9NWEL
CALL. IAN0UAIKIYPN0)
PHASP~u(PI2)*PN,

IF(JPftINT*cQ*n) GO TA 99IA
PRINT AICWEL

Q91) CONTINUE
CALL UPDATO
MOITu.)
I PIUT*r
FEP PSUM' 9.t
PESOSMuQ.4 P RM!N81O.

-j DIFSQS*O.
DIFMINwSn-)'.

D~O I? 1CYCLE%1.lNCYCLF
f GENEPATE NbiLAY 9AMPLIES FACH OF YI A#".Q XN

CALL PLILS0 ,
C COOPUT! ACCUI'ULATOR O)UTPUJT FOR I AND Q CHAkNIIILS

*1 * IPRNT()PQIT()Pq!NT.)+

PINT 7,ICLE1PfN(

M1(IR.EO.'1) GM TO 11
PRINT 791CYCLE

I) CONTINUE
CALL FILTN'q(KX IN.*MqNVF.QvNS T )

c CH1:C'( FOR IV W F L
C NOVFLI AND NnVFLO AR 'VU"8ERS 11F OVEOFLOWS

IF(N')VFLI'JE.,)) PRIIT ',NOVFLI

Fig. E.1 (Continued)
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!FC(flVFLQ.l'Evl) PR14~T 3,N'OVFLQ
r IMPLF7MFNT QM~ ALIAO'ITHM

1RvShIRMSA( IN! P#1,TNQR"5)
!FCPtXN'').~, 1)GO TO 11I YlRM StFL)A'( IRmS)*Q7

PINT 99!RMS,XIRPS

11 CONTI UE
C TRUNICATE TO~ YE I3!TR N!D fyPAI TO 'OF 3!TS

TM(PRINT(R)ECC") Gfl TO 13

13 CON~TINUE

AVC~vhL~keVk/ ?CYCLf

YF (FRPAV*LT*E9POUT) L4RMA~vmRPC0lI

YPRvlTFL"T (I0riS'F)*GlJT
PE ROUTUxkPIkST- tHv-0lOil 'V

VER S(1'4'PFP IJ"+0'Ev~'OIT
FAVFcRxPEklqU'A/TCYCLF

PAVSQVxP9SflS4I'C YCLE
PAV~qcV*SORv(PVSQV)

IF CPFRVA'4LT.Prk0)JT) FFvAXwP~cOIIT
IF(PFA0'J~ltnT .Pc&0T) PFRvIk*PEPOIJT
FV'I~lFvERkmUT-ER)IJT
0IP SlJM=D IFc m 'b ! F
AVG'DFDIFSU4/ICYCLE
lIF3 SS.OF lSFRQD! F*
'lFASVsDlFM'q/TCvCLE
DIF M iS VaSQ 0CTf I C A 1V

VAODTF=DlfSV-'VGDYF**l
TFDF-vlTER~F DTFvAXxsli.D!F

!LF(JPRNT.rG') SO Tl~ 0)3A
03INT 084,TCYCLAE TEUIMTERMTSnP,0"T

Fig. E.1 (Continued)
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I_ _ _ _ _ _ _ _ _ _ pi-g.-':1,1101:111 l11

C NTEGRATIONJ

WIOUTmFLOAr (!OlUT)*QOUT
IM(PRINT(O)*Enol) 60 TO 14.
PRINT 16,I1iTVIAUT

14 CONTINUE
CALL AD(OI~IRSi~)YITfEFS
IF(1NTOFL*'lEfl)PRIN~T 17
YP!OllTvF LO T (I POUT) aQOIJ
MFINTOLovC,3) GO To 12
PRINT 4,1CYCLE

12 COkT INIIE
OUT 2LO AT (TOUT )*QOIJT
tlvPNT=SUMT NT* rUuJ
IM(PRINToPG.O) C-0 TO QF0
PRIKNT !.B,RVGEPf(,PAVERP,AVGPI F,FOR01M4fPE17IN,DIFM'IN,

* p p ijA X, P .Rm A V 1M AX
QF9 CONTINUE

OUITAR(JOWWW)~ OUT
P UT P A R(IW YI PpO UT
OUTT94E(I0WF~xNCVCLE*THE*0UT

15 C ONT INUE
MFNSATeNfeil) PRINT 1,KSAT
PRINT 90?
PRINT 9AI
DO 9 c5 IIDWELxl,NDWEL
OUTE.aROJTFOCIIDW EL)OtTTHF(tI1W1FL)I
O)UTPFRuItTnAtCIDWL)tTT(JIDWL)
nllTDIFwOUT0Ra-f UTP;R
P JEASM uOUkP'SM*A(UT EQ
0PERMx4OPE'PS'M* 'LTPP R

0UA%'FmOUE'Sm/ IlbWFL
0PPV1R*OPErSM/ IwFL
lI0AVF~x00IFSm/IlwFL
,E SQ!Mz:4: FSl)S" ' "UT tPR * *
OPFSSM:OPEqSV', UTPP R**?

O)UTSTGs(O~rS4/lUVWEL)OIAVE'**2
OUPS IGz (0P SqM/I!! WEL) -OPAVEP**2

I OUJTMINrTs0'Y'ERI') 01JTmjN=0UTEP9 I

IF (0IlPMAY.LT*OIITPEQ) OllPAX=0UTPrR

Fig. E.1 (Continued)
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,177

!F(OrFMAA*.IT*OtlT~lv) ODF'- AwxaUTO!F

!FCMD(ID4!EL,1Q),NE.O)D 60 TM 192
PRINT 9agIWLOtT" IWE~fUA(I!iFL) ,fUTERR,

PFINT

I CON T I ,(E
I f. C 0 NT N LlE

!Mi4RP~UTINL STAfPTO

* L!VFLF,L~LDFLS ,LFVFLF,LEVELCCrCST(51Z) ,KCOST(512),
* LFVFLT

I FOFMAT(?FI'%I.)

Z~FOOMAT(7F-1~.)

3 PCFVIAT(H1.IX,'.SfAtf fACTOP

lK,'CLUTTri DC-TO-M'C V'PWEP P#,TI'% v
lWSIC"A O~F CLIjTTEQ ltP9CTRllfl o #,3YqFvsejv r7,I

aIXt-CLUTT-R. PHArE s ', ,l,, QAb'l
4 FOQ'*STC1~q'SAP4PLTNG FROW)LOICY hl 1')
5 FORMMT(X,I#WPPLER F tI'~CY h4f'
eF,0?M4T(1X,NIMr)L' A~F A,'CA VwrI3L

l* W~lV 'OF trLA, ,'1/
* ~ ~ O PU~~f)' LSE INYrErRATr9 y ' ,5)

7 FO )MAT(i,'FIL'fPP Y~OM~L L':NrTq4S 4. C' X

-FO0M#T(I.2)v,' FILTr'R C'AEFF'CIEN~Tt I

a FOMT,'zC. NO$*pr T S ')A .,3TL

Fig. E.1 (Continued)
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tI1Xt'A5 - IGNAL AM1PLITUD~E *K x"94X#F12w5
*/I v '9 -! CHAtN. D)C CLUTTPR o- K :2 vX#F 1 ~5

74*I1X,'DSs * CHAIJ. 5C CLUJTTER o K =',?XFiZ,5
*/l~t*C 2 AN' Q AC CLUTTFR q K zlvXIF12.5

*I1Xo'DT 2 I/PRF IN SECOINDS *'qFX,FlZ.5
*1WFD x INITIAL DOPPLER IN HT *',3X,FI'.5)

C READ CLUTTER AND SIGN4AL PAPAM'ETEqS

READ( 5, 1) CAL ,SCOD~,xm?,S lG'AAF, CLTPAS
PRINT 395CALvSCRfl3,X429SI6MAF ,CLTFAS

C RE4D RADAR PARAr4ETORS
READ (5, 1)S AMPF
PRINT 4,SAM'PF

c READ D"PPLER FRE4UENCY
READ(5,1) rDoP
t"RINT 5#FDflP

C READ FILTER "ARA'4ETEPS
SE A 0 C5, 2 )NftW~L ,N )E LAY, NCYVCL E
PRINT 69NLWEL,'DELAYoNCYCLE
EAD (5, 25) (C(~fJ (K) ,K3INOFLA V)

RE ID(3,2 )MX 9mC q4T%4F ME 9 'S
PRINT 7, X ,MCq'T ,MFq,4E ,MS
READ(5,2)(YPRINT(0I),tl,7)
LEVEL X 3 !* *4
LEVEL Cu t*'4 C
LECV E T*2 **"T
LfEVEt F*2**"F
LECVEPLEw 2** E
LEVEL S 2**m~S

c A/D CONVERSIIN OF TN'! FILTER COEFFITCIENTS
QCzZs/FLOAT (LFVELC)
DO 13 IDLELY:1,%DLLAY

11 CALL C(E(),S(D A,,n~tIELYorL":VZLC)
PRINT p
D~O 14 IDELAV~l *NWA Y
IS%'CONSTCYD LAY)
IF (I1 .(T*LcV'LCi?)TSS1S-LtAPELC
4C0NSTsFL0sT(I )*QC
YCONST(IDELAY)=GCONST

14 PPINT 9,IC)L4Y ,CON ,T(IDE!LAY) ,ICONST(TOwLAY) ,qC!NST
DELTs ./SA"PF
N PU I S N CV CL F * N'DELAY
P123. 14159765 32

C GENECRATE GAUCSIAN SAmPLES
CALL ANIT(',347?.)
SIGRAPJI

Fig. E.1 (Continued)
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CALL RANDPM(XN,Nt'*,SIGPAN;
TC,ThU~1 ./(PI2*SIGvAF)

r SET OP CO~NSTANTS FIR THE CLLJTTFR AADFL FILTEP IMPULSE
C VESPON~SE

SIGSS=SIGTAU/DELT
IT!: QRT(PT0/')*S1GSS

I74A~(:6* IT!

c GE14EIATE FILT90 !MPULS 0lFSP04F
DO 1' Tz1,7TIAA

I? CONTINUE
c 0711EPATE SCALE F aCTo;?S
C CHANCE TO A~S~~~r)SA

AS S as RT ( ScI ) * S C At.
PSz=trRT( Xi7'/Ci .*XM') )*. CAL*CflSCCLTFAS)

I"E TUn N

I N/R AO'U / s'II ',ri 1.T ,N OUL SF ,FO~ 0 0) ,)flS ,C D S

DATA K/"1/

c GFN RA1 ;- NOU13 F qAmPLF. nF CLUTTcR

C It

Fig. cT 11c -rT A ' A D 1 1U~ LiL S E E b
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lm=6-J)t*TTII

J P = J + J I N C
CI (I)SCI (I)+XNT( JP)*H(M)
Co(I)aCQ(I)+XNT(JP+JQ)*4(4)

14 CON~TINUE
RETuRN

SURRMUTINE P11L'EQ
COM()N/FLPAP/kIIfLNI2ELAY,NCYCLFTtflN'T(512) ,LEVELX,
* VVFLFLEVELSLVL LVLsnNT52,XCONSr(51?),
*LcVFLT

CO0MON/PULTFL/Y1C512)'KQ(51?),JA CLU

C GENE~RATE NbEtAY 'sAMPLES A~F ! IGNA PLUS CLUTTF~R

003 Si ID~~NFA
V TF(PP'AS ebr.PI7) PHASExPPASE-PI

IF(PPASE.fT P0.$DPARTP.23 CA~e--AS

IF(DPHASESE, PV) DrHASE=rPPA-P!
IF (OPHAFFtE,*P TV") PAfsIOH.
XQCI0.EL)8AS*STh(DPHASF)
YI(IfDEL)wCAS*Cf S(DPHWl)
IF(JADCLU.vG.o) r~O Tf) 9tC'
Y 'InL)xXI(T D FL ) 4S4 C *CI( ICLI'T)

XQ(InEL)xXO C DrL.)+Ds-C$*CU( ICLUIT)

QIC CONIYUE

SU!KnUT ItE F ILTbQ (Y , 01, \'A( )FL 9,A-T)

Fig. E.1 (Contilied)
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* LEVFLF ,LF."fLS LVLLVLgnNT52,YCONST(512),
* LEVPLT

*1 Pt)PMAT(/lXq'F1LTcR LIPUiT FnR DrLRY N'W9'4, 'F12*5)
*2 F0RMAT(1~q'QiA.lTlZFD IllPIT1XOCTAL ',012,

* 5X,'QUANTT77o = *F12.'5)
*3 FOR T(1W,'MULTIPLIEq ('1TPUT'VRQo,"CTA. In~

* 5VvUU.ANT?ZcP- ,125
4 FOPAT(Y,TPU!CATcD PQOfUCT'jcX,'()CTAL 'l~

* ix,"%UAPITTU( a ',F12*5)

5 FORMTM,ACCM'JLATOD VALLIF',cX,'ICTAL oMt
* 5X, QlJAlkTTZPtD a .F12.5)

,5FORMAT(1Xt'IPllT TVn RIMS ALV)PITH .,;(, 'O~CTAL a*02
* SX, 11lAr4TTZFt, F '12.,5S
7FORM~AT(1Xq,'fl(t*i,'#A/ C( VF'qTFR ST*TC. ~ ,
F0~RmA(X,1HI*) '0VFPFLjw i. ArC1IvJI.tTO', 1 (j*))
0XxZ,/FL"'A'(LEVLLX)

4C?-F A (LEELCI?
0T A C C v I L~ .T

DO 11 IDcLAYx1 ,N~PiLAY
TV(XP4INT( ) .Nv') PINT 1q,,EL~vsv(I~cLAY)

r A/!D CONV'EQSIOW OF STGN4AL RA4'PLFE
CALL J4A(nFlI AY).IX,.LFV.LXT3~r)

1F(l.CTLvrLM /')TS3X'q-LEVFILA
I )(FL0AT(CS ) *r

12 r'T:l r.tl-

~F(I.\C).C.') On TO IT

o~T S~ I u L M

C T UNCA TT )li AV, nN!\

I!S I~ T

Fig. .1 (ontiued)COPY AVAII F TO DOC IOES NOT
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PRINT 4,IMT,XVuT
14 CONTI NtJ

C ACCUMULATION
CALL ADD(IACCIMTIACCIACOFL,LEVELF)
I F( IACOF L..E *01)PRINT 8
IPRINT( S.EO') V') TO 15

kIF CIS*6T*L0AVELF/*')! SmZS-LEVELF
XJACCsFL#')AT(IS)*OT
"RINT 59IACC,XIACC

15 CONTINUE
11 NACOFLrNACIFL. TACOFL lmay

C FIND THF MAGN'TT'IDr ~ailrYi B!B~
TvSavAGNv(IAtC#LFVFLF) COPY AVAILULL To 10~ '

lF (lPRINT(A) .S4,") RETVRNJIJI ~tIPpghCrRXINRM~wFL0T(IVP-RMIT NlULLUpa
PRINT o, Nn'MS, YIAJRS
R~T UO N
FND

FUNCTION J' (tllo
C FINDf IL. AND V, THE LARGER 4ND~ TI4F SMOLLED 'Af TWE INPUTS

IF(Ptt.*GT.TN0) 60 TO 14
ISZIKIt

';o Tn 12

11 tLxV''I

TF(I*LT.ILO02) jr TO 11

C IF S > f'* 1LOzL2I

ISA2=IS/2

C IF S < fl,S L

PET V N

EUBROUTINE C0EP (ysTXeG%~LFVFL)

Fig. E.1 (Continued)
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XNx:X IQ jj

I X X?
y ~ X P - I I>

RFTUPN

UPRMUTINIE lAD (X ,lfnLEVEL*TbI T)

tSAT*J

fF1S~~ Jr- fMAX (0 T"I'

1 Xzly*LlVEL-1

1.1 (xiq ..1 (9 !x'1 *LI"

7 S 1 T I '

C~~~~~L FI~! t4~C~~ t

S!UF(kN7 .LTINE.. r VFL 4O tj (lfLfV
IA Xat ILI

r F1l~" Sjr,% isT'! A s

f ADDC F'R ,1j'F1

I C~ a I
Fig.*L*. vT~ COP LV t )o A0 'it) NOT

I. Coniud A ~ ~ AI R~L PR =rrI
_______________C_ 218IR LEGIBLE N



-~~~--.'.-.~~~!II -t I..~ -- *" 7 ' ~ ~ '7 7

Wo .'4 - --. Nl 7

~ 2W'ye"

FIND

FUNCTION 1!HfT,LEVLN,LFVLTPLVLOUT)
C IN HAS M'IN BITS (tEVLIN 2*PN

*C TPUNCAIE IN TO' JPT! BITS (LE*VLTA 2**MTP)
JTRfXaIN/(LEVLlN/LFVL7P)

C EWPAI41 TO MOUT SITS (LVLott a *MIT
IP(ITRFX *tT.LrVLT0/?) RPTURC
TTPEY=ITPEv.l VLVUT-LYFVLTP
RETURN
FND

FUNCTION IPtL(N1,92qLFVFL1 ,LEVEL2)
C CONVERT INPUJTI TO F !GI'Et !NTEC-fD

fAEaLFIVELI/P
MAX~xLFVFL'/?
N SI1' N 1

IFCN1.GT.MIXI) IS12NI-LFVELl

MUjt..NSI*NS7

C CO'NVERT PRODUCT Tf' Twn:S COMPL~ENT

IF(MULoGE91) RFTURN

RET UR N

FUN~CTION K4MIFQ(N#LEVEL)
C MAGN!TUn)E OF A TWI~ CO"'PL.MNT NIIMfl(

lF (I .EQ*LEVFL/2) !.I~
vAG NF SN

TF(MAGNFoLT9LEVEL/?) RFTJRN.
mAGNFmLEVEL-."A(rt4
PETURN

SUSRinUTINt RANIU CIXtIY,qND)
IY2FLQC5,31 ,X*6559)

RETURN

Fig. E.1 (ontinued)L

219



SWRROUTINE ANITCSTART)

AIRD:5TAKT

RSx47'416*
R~ETIJRN

SU6AeUTINE RNt0M(X4NjXEA%4ST~rV)

D~O 3 a #

IR ANF OATal

XN~xTDEV*APV0Y

% ETUON

COPY AVAILABLE TO OUC OEN O
P~rr r FULL L" ~E PRODUCTION

Fig. E. 1 (Continued)
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-APPENDIX F

COMPUTER PROGRAM FOR SIMULATION OF THE VU)ATING-POINT PROCESSOR
by Brian P. Holt and Bhadrayu J. Trivedi

LaeThis appendxcontins the FORTRAN tooputer programtu iulth

Card-i -- NRUM
Explanation -- Number of simulation runs to be made.
Format -- 12

Card-2 -- SCAL, SCRDB9 XH29 SIGNAFt CLTFAS
Explanation -- SCAL is a scale factor for normalizing signal plus clutter,

in order to use all the dynamic range of the AID converter. SCROB
is the signal-to-clutter power ratio in dB. SCROB is 0.0 if no
clutter is to be used. XM2 is the ratio of dc to ac clutter power.
SIGMAF is the standard deviation frequency in Hz of the clutter power
spectrum. CITFAS is the phase of the clutter.

Format -- FI0.4

Card-3 -- SPIPF
Explanation -- SAHPF is the suampling or pulse repetition frequency in Hz.
Format -- FlO.4

Card-4 -- FOOP
Explanation -- Doppler Frequency in Hz.
Format -- FlO.4

Card-5 -NOWEL* NDELAY# NCYCLE
Explanation -- NDWEL is the number of antenna dwells. NOELAY is the

number of filter coefficients. NCYCLE is the number of residues.
Format *-313

Card-6 -- (CONST(K)s K-1, NDELAY)
Explanation -- CONST(K) is the Kth digital filter coefficient. Note

Z , that a maximum of seven coefficients can be specified on a card.
For more coefficients, extra cards should be used.

Format -- 7F10.6

Card-7 -- IW, 11CM, MTh, MFM, MFTI MRI, MRT, HIM
Explanation -- These are the processor mantissa bit-lengths as described

in Table 5-1. Table 6-1 and Section 6.1.2.
Format -- 813
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Card-8 -- MCE, MTE9 MFE, MIEv MIE
Explanation -- These are the processor exponent bit-lengths as described

in Table 6-10 Table 6-1 and Section 6.1.2.
Format -- 513

Card-9 -- IDIV, JADCLU, IK4OD, JPMNTI, JPIRKT2* KTHEOR
Explanation -- IDIV indicates an option for implemnting the hardware

RMS algorithm.
IDIV a 0 Manipulate L and S by adjusting exponents as far as

possible.
1 Manipulate L and $ by adjusting mantissas only.

JADCLJ controls addition of clutter to signal,
JADCLU a 0 No clutter.

1 Add clutter.
KNOD, integrator output statistics are printed out at

multiples of KNOD antenna dwells.
JPIR4Tl is the'antenni dwell'number at which a

detailed debugged printout is to start.
JPRNT2 is the antenna dwell number at which the

detailed debugged printout is to stop.
KTHEOR controls the type of filtsr coefficients to be

used for computing theoretical output.
KTI4EOR - 0 tUnqu anti zed coefficients.

a I Quantized coefficients.
FORMAT -- 615
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4j#.

C MAIN PROGRAM
C FLOATING POINT SIMULATION OF MT! RADAR SIGNAL P'ROtSSO
C JANUARY-SJUNE 1976 U& Of A. TUSCALOOSA

C MAGNITUDE IS EXPRESSED INS INTIOGAIZED TWO#0S C@R1#Lt4R4NT
C NOTATION. EXPOtNl Is EXP4,11S ID I%'Tt~ftz1 HOGN
C MAGNITUDE N4OTATION.
C ***********.*****.**********

INTEGER EMINXIFMINR
DIMENSION OUTAR(1000),OUTPAR(1000),OUTTNEf(1000)
DIMENSION MN20000,(2000)
COMPONIS ATUR/NSAT
COMMON/SACOUTIXI(512) ,xQ(5 2),JADCLU
COMON/CLTGEN/PHASE ,ICLUTCZ (512) ,Z-Q(S12)
COMMON/SAC6EN/P12,DELTFOOPAS,8S S DSt
COMMON1NOI$E/ARDRND1,RS

COMMONIRMSHAL/MRMLEVELREW4INRIDlVMRE
COMMOt4/PRINT/JVRINT
READ (So1) NRUN

I FORMAT (12)
bO2 IRUNs1,NRUN

C INITIALIZE A/D SATURATION COUNTER
NSA T*O

C
C READ CLUTTER AND SIGNAL PARAMETERS
C SCALOSCALE FACTOR FOR SIGNAL AMPLITUDE
C SCROB*SIGNAL TO CLUTTER RATIO IN DR
C NOTE: SCRDRafts If CLUTTER IS NOT USED
C XMZSRATIO Of DC TO AC CLUTTER POWER
C SIGMAFwSTANDARO DEV* OF CLUTTER FRIG* IN H?.
C CLTFAS'CLUTTV P#4A3E
C .***.

READ (5,!) SCALqSCRDBWM2pSI6MAFvCLYFAS
PRINT 4, SCALSCRDBXM2vSISMAFCLTFAS

3 FORMAT (7F'0O4)
4 FORM4AT(1H1,'SCALE FACTOR a '916XFIO.4/

l Xt'SIGNAL-.TOinCLUTTER RATIO a ',5*,tFI~o.A W-4
* X,'CLUTTFR OC-70-AC POWER RATIO a 'Fq
* IESIGMA OF CLUTTER SPECTRUM a E,3XqF1o4t HZ,/t
l Xv'CLUTTFR PHASE V ',15XF~o.4,' RAO')

C ***~ *;********************A

C READ RADAR PARAMETERS
C SAMPFwSAMPLIN6 (PULSE REP.) FREO*
C FDOPxOOPPLFR FqEQo
C *******.*********************

Fig. F.1 Listing for the Floating-Point Simuliation Program.
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5pF

READ (5,3)- SAMPF
READ (593) POOP
PRINT 5, SAMPP

5 FORMAT(IX,'SAMPLtNG FREQUENCY *,9XsF9.?v3X*-HZ-)
PRINT 6, POOP

6 FO*MAT(lXv'VOPPLfR FREQUENCY s ,IoXtF9.,3XH"zE)
C
C READ FILTER PARAMETERS
C NOVELaNOto (tf ANTIN#4A DWELLS
C NOELAVONO* Of FILTER COEFFICIENTS
C NCYCLESNO& OP RESIDUES
C CONST(K)*K-TH FILTER COEP.

READ (5,7) NOWELNOELAYNCYCLE ~
7 FORMAT (10T3)

READ (5,8) (COt4STCK)vKulqdDELAY)
8 FORMAT (7FI0.6)

PRINT 99NOWELNDELAYoNtYCLE
9 FORMAT(IX,'NUMPER Of ANTF14NA DWELLS -t',Xvt5v/

p * iX*NUMBER OF DELAYS a 0,1ZXVIS,/
IX,'NUMSER OF PULSES INTEGRATED a S~t51

C
C READ WORD LENGTHS IN BIT
C 0MwINPUT SIGNAL MANTISSA WITH SIGN
C MCM&FILTER COEP. MANTISSA WITH SIGN
C PCEuFILTEA COEP. EXPONENT WITHOUT SIGN, *GE.O
C PTM.sTRUNCATED PRODUCT M4ANTISSA WITH SIGN, cLE*MX1M$MC0W1
C 14TEsTRUNCATE0 PRODUCT EXPONENT WITHOUT SIGN,

*C 2**MTE *GE s C(2**MCE)+MXMN4CM-2)
C MFPxFILTER ACCUMULATOR MANTISSA WITH SIGN, 9GE.MTM
C 14FE=FILTER ACCUMULATOR EXPONENT WITH SIGN, eGT.MTE
C MFTsMAG* OF TRUNCATED PILTER OUTPUT MANTISSA
C WITHOUT SIGN, &LT*.MPM
C 14RWSRNS MANTISSA WIY4OUT SIGN, *GEoMPT
C MREsPMS EXPO"ENT WITH SIANq *6f*MFf
C M4RTSTRUNCATED 00MS OUTPUT MANTISSA WITHOUT
C SIGN, *LEo'RM
C MI11uINTEGRA.TOR MANTISSA WITHOUT SIGN, o*GE.MRT
C PlEZINTEGRATOR EXPONENT WITH SIGN, *GE.MRE
C

READ (5,7) MXMMCMqMTMMFMqNFPTM9MRTMIM
READ (5t?) MCE*NTE*MFEMREMIE
PRINT 109 MXMvMCM,9MTWMPFMNFTRWPRTPIM

10 PORMAT (IX9-PROCESSOQ MANTISSA SIT LE4GT4S-,4q-M-9'
*3X,"MCM',3X,'MTM',3X, EMFMD,3XEMPTE,3X ,MRM',3X,

PRINT 119 "CEtMqFEtWREMIE
11 FORMAT (IX9"PROCESSOR EXPONENT BIT LENGTHS",10X9 MCE',

Fig. F.1I (Continued)
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KFI" 1r7 7 - - fi' ~ ~ ~ ____

C *fAv OPTIONS
C IDIVsOPTION USED SY SUPROUTINS RMSHAL
C JADCLUaI IMPLIES SIMULATION WITH CLUTTER
C wO IMPLIES SIMULATION WITHOUT CLUTTER
C JPWINT a A PRINT OPTIOfN, CAN 9E HIED OO *EPUSSING
C If JPRINT xI THE!N NOWEL a 4 SO T14AT THE SIZE Of
C THE PRINTOUT ISA ESS THAN4 100 PAS
c KTHEORvO IMPLIES THEOR. USING IDEAL COEF.

C *I IMPLIES QUANTIZED COF. USED
C

READ (5,12 !DIVJAOCLUKMODJPRNTIJPRNT2,KTNO*~
12 FORMAT (61%)

IF CJADCLUeNte.) PRINT 17,IOIV
IF (JADCLU*EO.1),PRINT 18910IV

1? FOPMAT(I,1W,10(IH*)q'THIS SIMULATION DOES NOT
**CONTAIN CLITTER',1O(IN0*),'IDI*s',21)

18 FORMAT(/,tX*10(lH*),'7HIS SIMULATION CONTAINS CLUTTERq

IF(KTNEOR.EQsO) PRINT 2051
tF(KTHEORefQs1) PRINT 2052

2051 FORMAT(1Xql0(lW*'),THEORETICAL OUTPUT WITH 'q
"*'IDEAL COrFFICIENTS'/)

2052 FORMAT(1(114*),'THEORETICAL OUTPUT WITH '

" 'QUANTIZED COFFfICIENTS'l)
C
C MODEL CLUTTER FILTER AND GENERATE CLUTTER SAMPLES

SCRUiO.**CSCRDs/10$)
DELTwl#/SAvPF
Plu3*14l5976533
PIZ2.*PI
NPULSERNCYCLE*NDELAYIi SIGTA~wI ./CPI2*SIGMAF)
IF CJADCLU9NE.1) 6O TO 16

C SET UP CONSTANTS FOR THE CLUTTER MODEL FILTER
C IMPULSE RESPONSE

SIGSSsSIBTAU/DFLT
IT!:SQRT(Pl/2.)*SIGSS
TIxITZ
SIG1=SIGSS/CSQRT(29))
ITMAXU6*ITY
INCGAUx12,'*((NPULSE-1 )/III)

C GENERATE FILTEP IMPULSE RESPONSE
D0112 I1,#ITmAX
BxI

Fig. F.1 (Continued)
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112 CONTINUESAL FCOR

C GENERATESCLFATR
C CHANGE To AS&SSRT(SCR)*SCAL

A SwSORTCS C ) *SC At
BSSRT(XR2/'C1 .,EM2))*SCAL.COS(CLTFAS)
CS*SGRT(1.fC29.(1*4KP2)))*SCAL
D~aS@RT(XM?/(1 .,XM2))*SCAL*SIN(CLTFAS)
PRINT 101
PRINT 102, SCALASlSOSCSOELTqFDOP

101 FORMAT(/125X*'PYI INPUT COMPONENTS'
*//?0xtv)CISIS*COSCZ*PI*F.*DT),BSCS*CI (CLUT)'
*/20X,'XQaAS*SIN(2*PI*FD*DT),DSmCS*CQCCLUT)')

102 F0RMAT(//1K,'K a SCALE FACTOR *'#12X'qFl2*S
W/WAS a 9IGNAL AMPLITUDE * K a',4XsF1Z.
*j'1X,'BS a I CHAhe DC CLUTTER * K s',2XFIZ.5
*/1X,'0S a 0 CHAN. DC CLUTTER * K w'q2XqF129S
*1Ixv'CS a I AND a AC CLUTTER * K ff',ZXF12.5
*/1X9'DT a 1 /PRF IN SECONDS 8',8XFlZ.5
*/lX,'FD a INITIAL DOPPLER IN H? w*,3EFI?*5/)

6O Tf 20
16 ASaSCAL
20 CONTINUE

C
C QUANTIZE THE FILTER COEFFICIENTS AND REPRESENT THE
C MANTISSA IN INTEGERIZED FORM (TWOlS COMP.)

PRINT 15
15 FORMAT C11X9-FILTER COEFFICIENTS#/I1X*-NUMBER-9

* 4X,'UNQUANTIZFD-,7E,"Oi'ANTIZE0*q1IK ,FR*OR,q3x
* 'MANTISSA'9?X ,'EXPONENT')
00 13 IDFLhYu1,NDELAY
CALL FICOEF (CONST(IDELAY),MCR,*MCEXCFL(IDELAY),

* ICEFL(IDELAY))
C CONVERT TO SIGN RAG.

IF (ICFL(IPELAY)*6T@?.o*CMCM'1))
ICQFLaICFL(IDFLAY).w?.**MCI*
iF (ICFL (IPELAY) .LF.20**(MCM-1)) ICQFLBICFL (IDELAY)
KICFL(IDELOY)sFL(OATCICQFL)*C?.**C1-MCM))
**(2*e*(ICFFL(IDELAY)))
COEFER:XICFL(IDELAY)-CONST(IDELAY) 1
PRINT 14v IDELAYCONST(IDELAY),XICFL(IbELAY) ,COEFER,
*ICFL(IDELA Y) ,ICEFL (IDLAY)

14 FORMAT (3Y ,13,6XF1O.6,6XF 1n.6t6XF1O.6,

1l. CONTINUE
C
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VS5



C CALCULATE THE INFINITE*PRECISION (TEOREICAL) OUTPUT
NDUMPw(NDELAY.1:/2
NDUP~w(NDfLAY-.1)/2
IFCKTHEOR*EQ*O) GO TO 2O53
HOFF XIC FL(CND)UmP)
00 19 IDUMm1,NDUM

19 HOFFuHOFF*? .*X!CFL(N0UMP-I0UM)*COS(PI2*FOOP*JDUM4*
*DELT)
6O TO 2054

2053 NOFF=CONST(NDUMP)
00 2055 JOUMm1,NOUIA

205S HOFFuHOF F+**CONST(NDUMP..JDUM)*COS (PR Z*FbOP*JOUM*
* bLT)

2054 THEOUT*AS*NOF

C INITIALIZE ERROR SUMS AND OTHER PARAMETERS
0UERSMv0*
OPFRSMwO.
OESQSM.0.
OPESSM2O.
QCFSSMvo@

OUTMAXs-1O"nOs
OUTM!N~vfl
OUPMAX*-10O,
OUPMIN*100no
ODFMAK.-1OmO.
0DFMIN=100m*

C ********* ****************.

C INITIAL VALUE FOR RANDU WHICH GIVES UNIFORMLY
c DISTRIAUTE) RANDOM SAMPLES BETWEEN 0. AND Is TIOCY
c ARE SCALED TO RANDOM PHASE VALUES BETWEEN Os AND 2PIs

IX'1234567

00 21 IOWELI,9NDWEL
IF I!DWEL.(E.JPRNTI.AND.TDWEL.LE.JPRNT2) JPR!NTaI
IF *IADWELLT.JPRNTI.OR.IDWEL.6T.JPRNT2) JPRINT*O
IF (JPRINT.EG*I) PRINT 2f01, IDWEL

2001 FORM4AT (/1X,1O(1H*)9'DWELL NUMPERE915/)
CALL RANDU (IXqIYqRND)
PHASEfu(P12) *PNb

IMHOuT~0
IN POUT :0
IrHOUTvEM4INX
IEPOUTEIN~X
ERRSUM:O.
ESQSUMO.*
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ERRMAX&-1Ot0O.
PERSUMO.0
PE SOQS14*O
PER" I Nal 0%
PERMA~a-000.
DI FSLIMSO
DIPSOSS0.
DXFNINS10On.
DI F9A X&-1O0.

C
If (JAOCLU910o) G0 TO 115
IF CIDWEL.NEoi) GO TO 113

C GENERATE 6AUSSIAN SAMPLES
N'INC6AU
ARD863472.0
INDIR AR 0*04*00 oeio
RS*47436*O
SIGRANRl .0

113 CALL RANDN CWN#Nqo.vSX6RAN)
C GENERATE NPULSF SAMPLES OF CLUTTER

00 1IIPULSQ'1,NPULSE
C! (1PULSE)wO.

III CQ(IPULSE)wO.
JQwINCGAU/?
DO 114 IPULxl9NPIJLSE
DO 114 Ja1,6

IMwIPULwJINC*ITI
M ( 6-J )*ITTI M
JP*J*J INC
CI(IPUL)'CI (IPUL),XN(JP)*HCM)
CQ(IPUL)xCO(IPUL)4XN(JP+iQ)*H(M)

114 CONTINUE
115 CONTINUE

ICLUTsQ
DO 22 ICYCLE%19NCYCLE
3DUpqEXXO
:F (JPRINTsE@.1) PRINT 2002, ICYCLEr

20O2 FORMAT C/3Y,'CYCLE'914)
C GENERATE NOELAY SAMPLES OF S16NAL 4 CLUTTER FOR EACH
C OF I AND Q CHANNELS. THEY ARE XI AND KG0

CALL SACGEN
C CALCULATE FILTER OUTPUT FOR I CHANNEL

IF CJPRINT.U'r.1) PRINT 2003
2003 FORMAT (3K,' CHANNEL')

CALL FLOFIT (XIJMFLTIJEFLTI)
C CALCULATE FILTER OUTPUT FOR 0 CHANNEL

Fig. F.1 (Continued)
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If (JPRINTiEQ. ) PRINT 2004-
2004 FORMAT (3X9-Q CHANNEL*)

CALL FLOFLY (X~qJNFLTQJEFLTO)
C COMPUTE RMS OUTPUT USING HARDWARE ALGORITHM AND CONVERT
C TO REAL DECIRAL VALUE*

LEVELFx2.t.*MFM
t.EVLFTx2,**(MFT.1)
IMFLT1sITREX(JPFLTI ,LEVELFLEVLFTLEVELR)
CALL JUSTFY (J14FLT!,!OUK~xqMRMvf"pft)
JMFLTQ*ITRFX (JMFLTQ ,LEVELF ,LEVLFTLEVELR)
CALL JUSTFY (J"FLTQIDUMEXMRPOEMINK)
CALL Rl"SHAL (JMFLTIJMFLTQJEFLTIJEFLTQJRMSJERMS)
NRSuFLOAT(JRMS)*2.**(-MRM4))*(Z..*JERMS)

C CALCULATE PERFECT RMS OUTPUT CSQRT(I**2+G**2))
C CONVERT FILTER OUTPUTS TO REAL DECI14AL P4UMOERS

PFLTlaFLOAT CJMFLTI)*(Z.**(mMRM4))*(2.**JEFLTZ)
*1 PFLTQaFLOAT (jmfLTQ)*(2.**(-MR1M))*C2.*.JEFLTQ)

PRMS*SQRT (PFLTI**24PFLTQ**2)
C CONVERT PERFFCT RMS OUTPUT TO FLOATING POINT NOTATION

IF (PRMS*L'.10) 60 TO 89IEPRNSI
RIEPRNS

88 R101I/20
IEPRMSxIEPPMS*1
IF CR1,GE.,O) GO TO 89
IM4PRMSxRI.C2.**MRM)
GO TO 90

89 !RmlwmRm+1
MRElwMRE-1
CALL FLCOEF (PPMSMRMIMRElIIPR"SIEPR"S)

9n CONTINUE
C **************************

C CALCULATC PERFECT RMS STATISTICS
C PEROUTxPERFE(T RMS OUTPUT-THFORIETICAL OUTPUT
C PERSUMwSUM OF PEROUT
C PAVERRAVEPAGE OF PEROUT OVER RESIDUES CALCULATED
C PESOSI4SSUM OF PEROUT SQUARED
C PAVSQVxAVEPAGE OF SQUARES OF PEROUT
C PAVMSVxROOT MEAN SQUARF OP PFROUT
C PSI6FR=VARIANCE OF PEROUT

PEROUTaPRMS-THF OUT
PER SUM£P E R S U MPER OUT
PA VER PE RS UM/ICYCLE
PE.SQSM=PE SOSM 4PER OUT**
PAVSQV=PESOSM/ICYCLE
PAVMSV=SQRT (PAVSQV)
PSIGFRvPAYSQV-PAVERR**2
IF(PERMAXsLT9PFR0UT) PERMAX*PEROUT
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IF(PERMIN*GT.PEROUT) PERMINmPtROUT
C CALCULATE 14ARDWARE R14S STATISTICS
C ERROUTcHARDWARF RMS OUTPUT-THEORETICAL OUTPUT

C ERRSUM*SUM OF ERROUTIC AVGERR=AVERAGE OF ERROUT OVER RESIDUES CALCULATED
C ESQSUMmSUM OF ERROUT SQUARED
C AVGSQVuAt)ERAGE OF SQUARES OF ERROUT
c AVGMSVaROOT MEAN SQUARE OF ERROUT

C SIGERRaVARI-ANCE OF ERROUT
4 ERROUTuNRAS-~THEOUT

ERRSU1mscRRSUM+ERROUT
AVEREASMIYL
ESQSU~u ES Q0'MERR OUT ** ?
AVGSQVsESQSUMIICYCLE
AVGMSV*SQRT (AVGSOv)
SIGERRuzAVGQV-AYGEPR**2
IF(ERRMAXeLT*ERROUT) ERRMAXRERROUT
IF(ERRMIN*GT.ERROUT) ERRMINw!RROUT

C CALCULATE THE DIFFERENCES BETWEEN HARDWARE AND PERFECT
C RMS STATISTICS

E RRD IF nER RfUT-P ER OUT
DIFSUMaDIFSUM+FRRDIF
AYGDIFuDlFqU!A/ICYCLE
tDIFSOS*DIFSQS*ERRDIF**2
DIFASVw0IF9QS/ICYCLE
DIFMSVaSQRT(DIFASV)
VARDIFaDIFASV-AV$DIF**2
IF (DI FMAX.LTeERRDIF) DIFV4AXxFRRDIF
IF(DIFMIN*9T9ERRDIF) DIFMIN*ERRDIF

C
C INTEGRATION
C PERFECT RMS OUTPUT INTEGRATION

LEVLRTuZ.** (rRT+1)
LEVEL1829** CMIM+ )
IMPRMSuITRFE.(IMPR4S ,LCVELRLEVLRTLEVELI)
IF (JPRINT#EQ*1) PRINT 2005,PRMSSdMPAMSIEPRMS,

2005 FORMAT(/3XIlNTEGRATION*/6X,'PERFECT R"S',
* 9XFl3*lO,4Xqfl10,3Xw13)
IF (JPRINT9EQ.1) PRINT 2007 IMPRMS,1EPROS

2007 FORMAT (I0W,#TRUNCATED OR EXPANOW9 ~
* I2XO0,3w,13)
CALL JUSTFY (IMPRMSIEPRf45,V4IMtEMINX)
IF CJPRINT*EO*1) PRINT 2008, IMPSMSIDUMEX

2008 FORMAT (1OV9-JUSTIFIED VALUE-,18XO~l,'3X.13)
IMCPRINT.PG.1) PRINT 2006, IMPOUT,IEPOUT

2006 FOR#4AT(1'XPREVIOJS INTEGRATOR SUM ',
* 1OX9O1C,3XV13)
CALL ALIGN (IMPOU1,IMPRMSIEPOUTIEPRMSMIM)
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IF (JPRINT*EQ@I) PRINT 2009, IMPRNSIEPRf4S#1MPOUT,
*IEPOUT

2009 FORMAT (1OY,'ALIGNED VALUES*,AK,'RMS OUTPUT'$

CALL ADD(I"POUTIMPRMSIM4POUTIFLAGLEVELI)
IF (JPRINT.EQs1) PRINT 2010, IMPOUT,1EPOUT

2010 FORM4AT (l0Xv'SUMf'- 4 XOO1,3XvI3)
C CHECK FOR OVERFLOW

IF CIFLAG*NE.1) GO TO 23
IMPOUTmIMPnUT/2
IfPOUTwIEPA'UT41
60 TO 24

23 CALL JUSTFY (IPPOUTIEPOtJTMINE"IWX)
24 CONTINUE

IF (JPRINTsEG,1) PRINT 2n11, IMPOUTIEPOUT
2011 FORMAT (1owt'JISTIFIED VALUE',16xqOlO,3xvI3)

C HARDWARE RMS OUTPUT INTEGRATION
IFfJPRINT9FQ.1) PRINT 2012, HRMSJOMSIJERMS

2012 FORMAT (6Xt-HrARDWARE Rms',SXF136lO,4xOlO,3E,13)
JRMSUITREX(JRMS ,LEVELR ,LEVLRTLEVELI)
If (JPRINToEQ*I) PRINT 200?, JRMSJERMS
CALL JUSTFY (JRMSIDUMEXMIMEMIX)
IF (JPRINTsEQe1) PRINT 2OOS, JRMSJER14S
IF (JPRINT.EQ*1) PRINT 2006,IMHOUTIEHOUT
CALL ALIGN (IMIOUTJRMSIEHOUTJEROSMIM4)
IF (JPRINT*EO.1) PRINT 2009, JRMl9JERMSJMHOUY,
*IFHOUT

CALL ADD (IMHOUT,JRMSIM4HOUTIFLAGLEVELI)
IF (JPRINT*EQ*I) PRINT 2010, IPHOUTIENOUT
IF (IFLAGoNEe1) 6O TO 2S
INHOUTaZMHOUT/2
IEHOUTwIfHftUT,1
60 TO 26

25 CALL JUSTFY(IMHOUTIE,40U1,MIMqfMINV)
26 CONTINUE

IF CJPRINT.EQ.1) PRINT 2011, IMMOUT9IEHOJT

22 CONTINUE

C FORM ARRAYS OF HAROWARE, PERFECT, AND THEORETICAL
C INTEGRATOR OUTPUTS AS FUNCTIONR OF DWELL NUMBERS*

POUTsFLOATCIPflUT)*(2.**(-M!4))*(2e**IEPOUT)
OUTPARCIDwfL)xPOUT
HOUTuFLOAT(IM"MOUT)*(2.***(.MlR))*(2.**IEHOUT)
OUTAR(IOWEL)wHOUT
OU7THwE(IDWFL)=NCYCLE*TNE OUT
IF (JPRINT*EQ*I) PRINT 888,OUTTHE(IDWEL),OUTPAR(IOWEL),
*OUTAR(ID~rL)

888 FORMAT (1OX,'THEORETICAL',5XF13.11/1OX,
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*'PERFECT',9XF13.10/IOX .HAROWARf *8Xfl3*1O)
21 tONTINIJE

*C PRINT AID SATURATION STATISTICS
PRINT 887, NSAT

887 FORMAT (//lX,1O(IH*),'THE A/0 CONVERTER SATURATED'9159' TIMES'

C CALCULATE INTEGRATOR OUTPUT STATISTICS
PA.NT 27

2? FORMATCI197,46,'---- INTEGRATOR OUTPUT STATISTICS',

PRINT 28
28 FORMAT(T6,'It4FIN!TE',T28,'ACTUAL Rf4S "ARDWARE10T66,

*"PERFECT RIMS REALIZATION',TIOT,'RMS DIFRE,CEt/tT69
*lPRECISION', /,T2'NUF APSWER'T2,9'OUTPUT,9T35 ,ERROUT'q
*T46,*VARIANCE',T61 ,'OLTPUr'T?4,'ERROUT',T85,'VARIANCE',

*T6,1?(IH*),T19,38(iH*) ,TS8,38(iN.),T97,35(IH*))
C OUYTHEnTHEV'RfTICAL OUTPUT FOR EACH DWELL
C OUTARst4ARDWARE RMS OUTPUT FOR EACH DWELL
C OUTERR*ERROR IN HARDWARE RMS OUTPUT FOR EACH DWELL
C OUTSIG&VARTANCE Of HARDWARE R14S ERROR
C OUTPAR*PERFECT RMS OUTPUT FOR EACH DWELL
C OUTPFRvERRAR IN PERFECT RNS OUTPUT
C OUPSIGVYAR?,ANCf Of PERFECT 1143 ERROR
C OUTD!F*HAROWARE RNS ERROR-PERFECT ONS ERROR
C ODAVFRuAVEPAGE OUTDIF
C (ODFSIG*VARTANCE OF OUTDIF

DO 995 IIDWEL819NOWEL
OUTERRuOUTARCIIDWEL)-OUTTHE(TIWEL)
OUTPFRuOUTPAR(I IDWEL)-OUTTHE(IIDWEL)
OUTOI FOUTFRP-OUTPFR
OUERSP4OUEISN*C'UTERR
OPERSNsOPERSM4OUTP~Ft
OOIFS(4*ODIFS"+OUTDIF
OUAVER=OUERS!4/JIDWEL
OPAVFRxOPEPS'4/!IDwFL
ODAVERxODIfS#4IIDWEL
OSQ S~aOE SO SN.OUT ERR**

OPE SN O PES SM 4OUT PER*

OUTSIGx(OESQSP9/IIDWEL)wOUAVER**2
o UP ST 6x(OP FS SN /'11 WE L)-O PAVER **2
ODFSIG:(ODP'SSP4IIDWEL)-OOAVER**2
IF(OUTNA.X*LT*OIJTERR) OUTmAXOUTEPR
IF(OUTMINeCTsOUTERR) OUT'4IN*OUTERR
If(OIIPMAX.LTsOUTPER) OiPMAX*OUTPER
IFCOUPMIN*GT*OtJTPER) OUPMIN=OUTPER
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XF(OOFMAX9UT.OUTDIf) ODFMAX*OUTO!F
IF(OPF14IN*GT*OUTDIF) ODFMINwOUTDfF
IF (IIDbEL.E.JPRNT1.ANDO.I1OEL.LE.JPRNTZ) JxObxI
IF (IIVWEL.LT.JPRNT1 .OR.IIOWEL.GT.JPRNT2) JMOWKmO0

PRINT 98491jOWELvOUTT ' E(lIOVEL),OUTAR(hIDWE&IQUTERR,

C
C PRINT STATISTICS OVER ALL DWELLS
C OUAVERs AVFRAGE OUTERR

COUT IA MINIMUMAG OUTPER
C OUPMIN3MINIMUN OUTPERR

C OOFMIN=MINTMUM OUTDIF
C OUTMAX*MAXIMUM OUTIRR

C OUPMAXwMAX!MUM OUTPER
C OFPAXSMAXIMPM OUTDIF

PRINT 983,OUAVFROPAVERODAVFR ,OUTMINOUPMINODFMIN,
*OUTMAXK OUPMAX ,OOFMA K

983 FORMAT(T?,'--- AVERAGE fRROR'9T32vEl295,T?iElZ.5vTQ7,
*EII.6,ITZ'---- MINIMUM ERROR',T329f12*5oT7I,!1Z.ST?

9

*E11~,/TZw~mMAXIMUM ERRORoT32,EI2.5,T7IEIZ.sT97,
*E11.4)

V2 CONTINUE
S TOP
END

SUBROUTINE SACGEN
COMMON/PR14T/JPRINT
C0MMONI5ACgEN/PI2,DELTFOOPAS,9SCS ,0S

COMMION/FILTER/ CFL(512)t ICE FL (51?),vNDELAY *MTN qMXM9
*MCMMFMMCE ,MFE ,MTE ,COWST(51?).XICFL(512)
COMMON/CLTGEN/PNASEICLUTCI(512),CQ(5lZ)
COMMON/SACOUT/YI(512) ,XQ(512) ,JADCLU

C GENERATE NOELAY SAMPLES OF SIGNAL PLUS CLUTTER
PI*3*14159?6538
P102xPI/2fl
PIOZT3u1 .5*PI
00211 IIDEL91#NDELAY
ICLUTxICLUT*1
PIASE=PHASF+PI ?*FDOP*DIFLT

DASxA S

Fig. F.1 (Continued)
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CAS=AS,
IF(PHAS!E.GF*PI?) PHASEzP4ASE-P12
IF(PHASE&GF'.PI) DASO--AS
IF(PHASE.GT.PID2.AND.PHASE.LT.PXOZT3) CASw-AS
DPHASE=PWAE PAEPAS'I
IF(DPHASE.CE.9PI) OHS*PAEP
!F(OPHASE.GEaPI02) DPHA$EuPI-DPHASE
XQ(IDEL)sDAS*SINCDPHASE)
XI (IDEL)aCIS*COS(DPHASE)
!F(JADCLU*EQ.O) GO TO 90nl
XI(IDEL)=XYIlDFL).AS.CS*CI(ICLUT)
XQ(IDEL)UXO(IOEL)+BSmCS*CQ(ICLUT)

900 CONTINUE
211 CONTINUE

RE TU RN

SUBROUTINE FLOFLT (X,MAGACCIACE)
C **** ****************

c THIS SUBROUTINE ACCEPTS INPUT (SIGNAL *CLUTTER)
C SAMPLES AND FILTER COEFFICIENTS* AFTER CONVERTING THE I
C INPUT SAMPLES TO DI61TAL VALUES IT IMPLEMENTS THE
C FIXED WINDOW MTI FIR FILTER IN FLOATING POINT ARITHs
C
C IACCxRAN'E BIN ACCUMULATOR MANTISSA
C IACExEXPtNFNT OF THE ACCUM4ULATOR
C
C MAGACC=MAGNITUDE OF FILTER OUTPUT MANTISSA
C IACE a FXPONENT OF FILTER OUTPUT

INTEGER EMIN3
COMMON/SATUR/NSAT
COMMON/PRI'JT/JPRINT
COMMON/FIL'ER/ICFL(512),ICEFL(512) ,NOELAYMTMM4XM,
*MCMMFMMCEMFFMTECONST(512),XICFL(512)
DIMENSION Y(512), ICEXP(SIZ)
EMIN'u-C2.** (MFE-1)-l)
LEVEL X=2***MXM
LEVELCx2.'#MCM
I AC C O
IACExEMIN3
QX=2o**(-MVM,1)
DO 5 KDELAY=1,NOELAY
ICEXP(KDELAY)zICEFL(KDFLAY)

5 CONTINUE
DO 10 11l,NDFLAY
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C IDUMEX IS A, DUMMY EXPONENT USEO FOR CALLING JUSYFY
C AFTER TRUNCATION OR EXPANSION. THE ACTUAL EXPONENT
C NEEDS TO Of SAVED.

IDVFXSO
IF (JPRINT*EQ*I) PRINT 1001, IX(I)

1001 FOR14AT C(lifIXINPUT $APPLE ','WC'IZ,')x',F13.O)
C THIS CALLS THE AID CONVERSION ROUTINE lAD.I CALt lAD (X(I),IXOXLEV1LXISAT)

If .JPRINTvEQ*1) PRINT 1002, Ix
1002 FORMAI (1OXV'A/D CONVERTED INPUTIl4XO1OSX,'0')

C If ISAT*FQ.1 SATURATION OCCURED. SATURATION OCCURS IF

c 03If (ISAT,NF*1) 6O TO 20

CALL JUSTFY (IMULICfXP(I),KEMIN3)
IF (JPRINT*EG*1) PRINT 1600,MULICEMPI)

1006 FORMAT C1OXJIISTIFIE0 PRODUCT',16Wt0o,3tX,13)
LEVELPx2s**(K+1)
LEVEL TxZ.**MTM
LEVEL Fz2 **MFM
IMTsITREX(IMIJLLEVELP,LEVELTLEVELF)
IF (JPRINT*EO.1) PRINT 1007, IMT,ICEXP(l)

1007 FORMAT(1OX9'TRUNCATED OR EXPANDEO PRODUCT',4.KO1O,3K,13)
M FM lxMFM 'i.
CALL JUSTFY (I"TtIbUMEKMFMIEMIN3)
IF (JPRINT*EQ.1) PRINT 1009, IMTICEXP(l)

1009 FORMAT (10Xq'JUSTIFIFD VALUE#,18X9O10O3X,13)
IF (JPRINT9EQs1) PRINT 1010, IACCIACE

1010 FORMAT (1Ox,'PREVIOUS ACCUMULATOR SUM',9WOlO,3XqI3)
CALL ALIGN (TMTIACCICtXP(I),IACEMFMl)
IFCJPRINT*FQ#1) PRINT 100l8, IMTICEXP(I),IACCIACE

1008 FORMAT (lOX ,EALIGNED VALUES,*5Xv'PRO0UCT'q?XO10,3X,
*13/?9X,'ACCUMULATOR#,3XO1Q,3X,13)

CALL ADD (TMTJACCIACCtIFLAGqLEVELF)
IF (JPRINT**EQol) PRINT 10,04, IACCIACF

1004 FORMAT (1OX,'SUM-s30XqO1Ov3XqI3)
IF (IFLAG*NE* ) GO TO 30
IACC=IACC/2
!ACExZACF.1
GO TO 11

30 CALL JUSTFY (IACCIACEvMFM1,EMlN3)
11 IF (JPRINTsEQ.1) PRINT 10119 IACC,1ACE
1011 FORMAT C10X*'JUSTIFIED VALUE'tIEXO10qlXI3)
10 CONTINUE
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MAGACC=MAGNICIACCvLEVELF)
C THE OUTPUT OF MAGNF IS A POSITIVE JUSTIFIED NUMBER
C SINCE THE INPUT IS A TWO-S COMPLEMENT JUSTIFIED ~
C NUMBFR*

IF (JPRINT*EQ*1) PRINT 1005vMAGACCIACE
1005 FORMAT (IfX,'FILTER OUTPUT MAGNITt~bE',1lXO1O,3XI3)

RETURN

C

C CALCULATES THE RMS APPROX. USING '.*3/16S IF SIL IS
C LESS THAN MR EQUAL TO 112a OTHERWI.E, IT USES 3/4L*
C liliES. I~m 9 TOM = THE I & 0 CHANNEL MAGNITUDES,
C RESPECTIVELY. IIZ 9 IGE ARE THEIR RESPEC1IE EXPONENTS.
C IRMS & IERVS ARE THE 14AGNITUDE & EXPONENT OF THE RESULT.
C IDIV IS AN OPTION FOR CALCULATING 11/16S9 3/16So AND
C 3/4L. IF IDIVu 1;
C 3f16Sm(S49/2)/8 ) ALL
C 11/16Sa((S*S/?)/4*S)/2 ) EXPONENTS
C 3/4.Lu(L*L/2)/2 )UNCHANGED
C IF I!DIVafl;
C 1/16SU(S+SI2)/4) EXPwEXP-1
C 3l/16S(SS/2)/ ) EXPaEXP-3

c3/4Lu(L#L/2) )EXPOEXP-1
C IDIV IS READ IN BY THE MAIN PROGRAM

INTEGER EMINP
COMMON/PRINT/JPRINT
IF CJPRINT9EQ.1) PRINT 1M03, IDI'V

1003 FORMAT (/3yqEHARDWARF RMS AL6ORITHM/flXtIDIV'913)
COMMON/RmMALIMRMLEVELR ,EMINR,IDIV,MRE
FMINR2-C2*(MRE.1)-1)
LEVELR=2.***(MRM*1)
IF (IIF.-IQF) 110,1?0,130

120 IF (IIM-IGM) 110911091!0
110 ILM=IQM

ILE=IQE
ISMTIm
I SE =I I E
GO TO 140l

130 !LM=IIIM

I LS aI IQE

ISE=IQE
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140 lEOIFFm ILE-ISE
Rim13 IL*0o"(2.**IEDIFF)

C THIS TESTS IF (S/0) IS GREATER THAN 0.5 OR NOT
If (FLOAT(lSm),LE*R1) GO TO 150
IF (JPRINT.EQ.1) PRINT 11001

1001 FORMAT (1OX#'(S/L) GT.0*5')
132LZILM+ZLM/2
Il18sClSM+ISM/2)14+ISM
IF (JPRINT.EQ.1' PRINT 10049 132L,!LE,118SwRSf

1004 FORM4AT (IOX,'(3/2)L',Z7K,010,3XI3/1OX,,(1ii8)S',
*26XOIO,3XI3)

IF CTOIVEQ91) 60 TO 160
ILEmILE-1
I SESI SE-I
IF (JPRINTeEQsl) PRINT 10059 132LILE91118SISE

*25XVO10,3Y,13)

IF (132L*LT*2o**MRM~) 60 TO 170
132Lxl37L/?
ILE*ILE~1
IF (JPRINT.EA.1) PRINT 1006, 132L9ILE

1006 FORMAT (0Y0VVRFLOW CORRECTION OF (314)L'*SX9O1O,
* 3X0I3)

170 If (I118S.LT*2,4*MRM) 60 TO 180t
!ll8sxullgg/2
ISEsISEsI
IF CJPRIN7.EOol) PRINT 1007t MR11SE

1007 FORMAT (1OXg-OVERFLOW CORRECTION OF (1IN)S-siXt
* 01O93X913)

180 134LwI32L
111165'iIips
60 TO 1000

160 134L*132L/?
IF (JPRINTsEQ.1) PRINT 1005, 134LILE,11116SISE

CALL JUSTFY (I34LtILEMRMEMINR)
CALL JUSTFY (11116SISEMRMqEMINR)
IF CJPRINT.EQ*I) PRINT7 1011, 134LILE,11116SISE

1011 FORM4AT (10~l-JUSTIFIED VALUES-t2X,'(3/4)L' 9XOlO,
* SE,13/28X,'C11/16)S',7X,0O,3X,15)

1100 CALL ALIGN (134Lvllll6SvILF9ISE#MRM)
IF (JPRINT*EQ*I) PRINT 1008, 134L,!LE,11116SISE

10)08 FORMAT (IQXtALIGNED VALUES#,4Xq'(3I4)LE9XtO1O,
* 3X,13/2BX,#11i/16)SE,7XO10,3X,13)
CALL ADO0(134Lt11116SIRMSIFLAG9LFVFLR)
GO TI 2000

150 IF (JPRINT.EQ*I) PRINT If102
1002 FORM4AT (10Xqd(S/L)sLE~fl.5#)
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132S:ISM+ISM/2
IF (JPRIN79EO*l) PRINT 11012, ILM9ILEt132SXSE

1'l1? FORMAT (1OX,'L/,32X10,3Xl13/10X,'(3/1)S',Z7lX,010,

IF CIDIV*E~o.) GO TO 100

ISExISE-3
IF (JPRINT*EQ91) PR1NT 1013, 132SISE

1013 FORMAT (1UXt-(31I6)S-q26XOIO,3X*13)
IF (132SoL?.*2***MRM) GO To 210

ISFwISE+II I316SxI32S
FIF JPRINT*EQ*I) PRINT 1014, I316S#ISEI1014 FORMAT (IOyt")VERFLOW CORRECTION OF (3I16)S'q3X,
01093X9 13)

GO TO 210
190 1316S=132S18

IF (JPRINT*EQ*I) PRINT 1013, 1316SISEii CALL JUSTFY (Itl6SISEMRMEMINR)
IF (JPRINT.EO.1) PRINT 1016, 1316SISE

1016 FORMAT (1OX,'JtJSTFIED VALUE',2wqE(3/16)SvfXqO10#

210 CALL ALIGN (1316S9ILMtISEIt.EqMRM)
IF (JPRINT.EQ.1) PRINT 1015, ILM*ILE9I316S*ISE

1015 FORMAT (lOX, 'ALIGNED VALUES'v5X9'L'q13X9O003X,
*I3/?9Xq'C'1l6)S-,7Xt,03X,13)

CALL ADD (13165, ILMqIRMSvIFLAGLfVfLR)
MO0 IERMSmILE

IF CJPPINT.EQ.1) PRINT InOQ, IRMSIERMS
1009 FORMAT (lOX 'SUM'q,0XqOlfl,3XqI!)

IF (IFLAG.NE.1) GO TO ?20
IRMSxIRMS/?
IERMSmIERM5+1
IF (JPRINT.E09l) PRINT 1010, IRMSIERMS

1010 FORMAT C1Oyt'OVERFLOW CORRECTION OF SU"'q?K,
0 1093X0I3)

220 RETURN
END

SUBROUTINE ALIGN (P41 ,IM?,IEI ,IE2tK)
C *********

C THIS ROUTINE TAKES TWO FLOATING POINT NUMBERS AND ALIGNS
C THEM SO THFY CAN BE ADDED. P41 9 IFI ARE THE MAGNITUDE

*C AND EXPONENT, RESPFCTIVELY, OF THE FIRST NO. 1142 & IF2
C ARE THE MAGNITUDE AND EXPONENT, RESPECTIVELY, OF THE
C SECOND NO, K IS THE 14O. OF BITS USED TO REPRESENT 1IM1

Fig. F. 1 (Continued)
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C 9 I"2 IN TWOS COMP. FORM EXCLUDING THE SIGN BITS.
C THE MAGNITUDE PORTION OF TIE SHIFTED NO. IS TRUNCATED
C AFTER EACH SHIFT.
r ******************************************************

COMMON/PRINT/JPRINT

INTEGER TEST
TESTS2**K

IEOnlE1-IE2
lAEDmIA8S (lED)

IDIF22**IAFD
IF (IE^V IA,9020

C FROM HERE 'i 12 IF EXPONENT > ) EXPONENT l.

10 IF (IPIIGE.TrST) GO TO 11
. I"1IIIDIF

Go TO 12
11 IM1IIMI/2

KED'IED$1

IMxIlM*+TEST
IF (IEDoLTO) GO TO 11

12 IEluIE2
RETURN

C FROM HERE TO 22 IF EXPONENT I > EXPONENT 2.
20 IF (IM2.GE.TEST! GO TO 21

IM281MV2IDIF
GO TO 2Z

21 IM2xlM2/2
IED21ED-1
IM28IM247TET
IF (IED.GT.O) GO 7O 21

22 IE2UIEI
30 RETURN

)END

SUBROUTINE JUSTcY (UNJEUNJKEMIN)
C ******** ***.*******************************************

C THIS ROUTINE TAKES A FLOATING POINT NUMSFR THAT IS IN
C TWOS COMP. FORM, JUSTIFIES IT AND ADJUSTS THE EXPONENT.

C UNJz UNJUSTIFIED MANTISSA ON ENTRY AND JUSTIFIED
C MANTISSA ON RETURN, EUNJR UNADJUSTFD EXPONENT ON ENTRY

C AND THE ADJUSTED EXPONENT ON RETURN.
C Ku THE NUM '" OF BITS IN UNJ EXCLUDING SIGN,
f EMINc THE SiALLEST POSSIBLE FXPONENT VALUE

INTEGER UNJ, EUNJO K, EMINt TEST
TSTS 2.**(K-1)

C TEST FOR POSITIVE IR NEGATIVE NO.91F POS. GO TO 140
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IF CUNJ.LT.TEST*2) GO TO 140

rC STRIP OFF SIGN BIT FROM NEGATIVE NUMBER
UNJ=UNJ-(TFST*2)

C TEST FOR 0 IN MSR; IF SIO, DONE
70 IF (UNJ.LToTEST) GO TO 110

C SHIFT NUMBFR LEFT AND INCR COUNT
UNJx(UNJ-TFST)*2

GO TO 70
C REPLACE SIGN SIT

110 tNJaUNJ+(TFST*2)
C AtJUST EXP()NFNT

FUNJxEUNJ-T
RETURN

C TEST FOR 0
140 IF (UNJ.eG*O) GO TO 22n

Ianl
C TEST FOR 1 IN mSS; IF SO, DONE

160 IF (IJNJ*GE*TEST) GO TO 2,0
C SHIFT NUOSOR IFFi' AND INCREASE COUNT

UN J 'UNJ *2

GO TO 16n
C ADJUST EXPftNFN'

200 FUNJuEUNJ-7
GO TO 230

C SET EXPONENT TO MINI%4UM VALUF
22fl EUNJzElN
230) CONTINUE

RETU '
END

FUNCTION IYREX(INLEVLINLEVLTPqLVLOUT)
C NOTE: THE RITLENGTH USED FOR COM4PUTING THE LEVEL
C INCLUDES THE SIGN SIT.
C IN HAS MIN BITS CLFVLIN a 2?*MIN)
C TRUNCATE IN TO MTR BITS (LEVLTR a ?**MTR)

ITREX=IN/(LEVLIN/LFVLTR)
C EXPAND TO WOUT BITS (LVLOUT a ?**MO0UT)

IF(ITREX *LTeLEVLTRI2) RETURN
ITREX=ITREX+LVLOUT-LEVLTR
RETURN
END~
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SUBROUTINE FLCOEF (XtMCMCEICFLICEFL)
C *****************************************************.
C THIS ROUTINE TAKES A DECIMAL FRACTION AND CONVERTS IT
C INTO A TWOl COMP. FLOATING POINT F(RM*

C X= THE DECIMAL FRACTION, MCa THE NJMSEA OF SITS TO BE
C USED IN THF MANTISSA OF THE FLOATIG POINT NO. (WITH
C SIGN), MCE= THF NO. OF BITS IN THE EXPONENT (WITHOUT

C SIGN), ICFLz THE MANTISSAICEFL* THE EXPONENT.
C NOTE AGAIN: ABS(X).LT.1.O
C *****************

INTEGER EMYN
L-fl

JMAXw(2**(mC-1))-I
JMIN9-(2**(MC-1))

iMAXu(2.**mCE)-1
1'0

C CHECK IF FIXED OR FLOATIVG COEFFICIENTS ARE TO BE
C USED. FOR FIXED GO TO 11

IF (IMAX.Eq .f) GO TO 11
XMAG=O.5

C NEXT SIX STATEMENTS TO DETERMINE FLOATING POINT
C QUANTIZATIf)N INTERVAL
5 IF(APS(X)*GEoXMAG) GO TO 10

XMAGsXMAG/Io

IF(IEQ.IMAX) GO Tn 10
GO TO 5

10 OsQH(2.**I)
11 XNsX/Q

IX8XN
XNUXN-IX
IF (IX.EQ.JMAX*OR*IX9EQ.JMIN) Lai
IF (ABS(XN),LTO.5) GO TO 23
lX'lXIISIGN(,lIx)

C IF ROUNDING CAUSED OVERFLOW, DIVTDE THE MANTISSA BY
C TWO AND ADJUST THE EXPONENT.

IF (L.NE,1) GO TO 23
IXwIX/2
IaI-1

23 IF(X.GE..o) 60 TO 20
C CONVERT NEGATIVE MANTISSA TO TWO'S COMP FORM

IXI1X*(2***MC)
20 EMIN:m-IMAX

KxMC-1
IEXz-I
IF (IMAX.EQ.n) 60 TO 21

Fig. F.1 (Continued)
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CALL JUSTFY (IX,IEX*KtEMIN)
21 ICFL=IX

ICEfLXIEX
RE TURtN
END

SUBROUTIZNE RANDU (XXIYND)
IYxFLD(5,31 ,IX*65539)
RND*IX*0*4654S413F-9
IX=IY
RETURN
END

SUPROUTINE RAD(q*4E~S0V
COMMON/NOISE/ARD,RN01 ,RS
DiIMENSION YCI
DO 3 11, N
ARNNARD**2+RS**2
K=ARN/lOOO0nOO~r0,
ARDx(ARN-FLOAT(K)*10'OOOOOOO.)I(fl.
IF(ARD)291 ,2

I ARDI.
2 RSxRS?1.

ftND 2' Aft *0,n.~
DEVOTaSQRTC-2.*ALOG(RNo1))*COS(6,283185*RN02)
RNL,1xRND2
XNP=STDEV*EVOT

3 X(I)xXNR.XMEAN
RETURN
END

FUNCTION MllLCNltNZLFVELILEVELZ)
C NOTE: THE ALTLENGTH USFD FOR COMPUTING THE LEVEL
C INCLIUDES THE SIGN BIT.
C CONVFRT INPUTS TO SIGNED INTEGER

MAX1:LEVELI /2
4AXZLEVEL'/2
NS1:N1

IF(NiGT'*M*Xl) NS1=NI-LEVEL1
IF(N2*GT.MAX2) NS2=N2-LEVEL2
MULmNS1 *NS2

Fig. F. 1 (Continued)
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C CONVERT PRODUCT TO TWO:S COMPLEMENT
IF(MUL.GE, n ) RETURN
MUL*MUL+(LEVELI*MAX2)
RETURN
END

FUNCTION MAGNF(INqLEVEL)

C NOTE: THE AITLENGTH USED FOR COMPUTING THE LEVEL
C INCLIJDFS THE SIGN BIT*
C MAGNITUDE OF A TWO:S COMPLEMENT NUMBER

IF(IN.EQoLEVEL/2) ININ+I
MAGNFwTN

IF(MAGNF.LT.LEVELI2) RETURN
MAGNFaLEVEL-MAGNF
RETURN

END

r SURnUTINE %AD(XjI~vQvLEVEL91SAT)

C NOTE: THE PITLENGTH USED FOR COMPUTING THE LEVEL

C INCLUDES THE SIGN BIT.
IXX/Q
ISATxO
MAX=LEVEL/7-1
IF(IA8S(IX).GE*MAX) GO TO 10
IF(X*GEfl) RETURN
1XIX*LEVEL-I
RETURN

10 IX-ISIGN(MAXIX)
ISATal
IF(IX.LT.O) IXIX+LEVEL
RETURN

END
SUBROUTINE ADD(NlqNZtN3,IOFLLEVEL)

C NOTE: THE RITLENGTH USED FOR COMPUTING THE LEVEL
C INCLUDES THE SIGN PIT.

MAXvLEVEL/?

IOFLsO
C FIND SIGN PITS OF NI AND N2

ISNI=NIIMAX
ISN2=N2/MAW

C ADD NI AND N?
N39NI+N2

C FIND THE CARRY BIT
ICARRY=O
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T
IF(N3*LTLFVEL) GO TO 10
ICARRY=I

C IGNORE THE CARRY
N3:N3-LEVEL

10 CONTINUE

C IF NI AND N2 ARE OF DIFFERENT SIGNSt NO OVERFLOW
IF(ISNI.NE.1SN2) RETURN

C FIND SIGN RIT OF NI
ISN3zN3/MAY

C CHECK FOR OVERFLOW
IF(ISN3,EQsICARRY) RETURN
IOFLxl

C ADD LEVEL BACK IF NUMBER IS NEGATIVE AND AN OVERFLOW

C OCCURED. IT CAN THEN BE CORRECTED FOR OVERFLOW BY
C THE CALLING PROGRAM*

IF (ISN1,EQ.1) N3zN3+LEVEL
RETURN
END

Fig. F.1 (Continued)
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